作者: Aritra Roy Gosthipaty,Suvaditya Mukherjee
创建时间 2023/03/12
上次修改时间 2024/11/12
描述:使用时间延迟瓶颈网络进行图像分类。
简单的循环神经网络 (RNN) 表现出强烈的归纳偏置,倾向于学习**时间压缩表示**。**公式 1** 显示了循环公式,其中h_t
是整个输入序列x
的压缩表示(单个向量)。
公式 1:循环方程。(来源:Aritra 和 Suvaditya) |
另一方面,Transformer(Vaswani 等人)在学习时间压缩表示方面几乎没有归纳偏置。Transformer 通过其成对注意力机制在自然语言处理 (NLP) 和视觉任务中取得了最先进的结果。
虽然 Transformer 能够**关注**输入序列的不同部分,但注意力的计算本质上是二次方的。
Didolkar 等人 认为,拥有序列的更压缩表示可能有利于泛化,因为它可以更容易地**重复使用**和**重新利用**,而无需包含无关的细节。虽然压缩是有益的,但他们也注意到过度的压缩会损害表达能力。
作者提出了一种将计算分为**两个流**的解决方案。一个具有循环性质的慢速流和一个参数化为 Transformer 的快速流。虽然这种方法在引入不同的处理流以保留和处理潜在状态方面具有新颖性,但它与其他工作(如Perceiver 机制(由 Jaegle 等人提出)和基于语言学习的快速慢速(由 Hill 等人提出))存在关联。
以下示例探讨了如何利用新的时间延迟瓶颈机制在 CIFAR-10 数据集上执行图像分类。我们通过自定义RNNCell
实现来实现此模型,以构建**高性能**且**向量化**的设计。
import os
import keras
from keras import layers, ops, mixed_precision
from keras.optimizers import AdamW
import numpy as np
import random
from matplotlib import pyplot as plt
# Set seed for reproducibility.
keras.utils.set_random_seed(42)
我们设置了一些在设计的管道中需要的配置参数。当前参数用于CIFAR10 数据集。
该模型还支持mixed-precision
设置,这会将模型量化为使用16-bit
浮点数(在可能的情况下),同时根据需要保留一些参数为32-bit
以确保数值稳定性。这带来了性能优势,因为模型的占用空间显着减小,同时在推理时也带来了速度提升。
config = {
"mixed_precision": True,
"dataset": "cifar10",
"train_slice": 40_000,
"batch_size": 2048,
"buffer_size": 2048 * 2,
"input_shape": [32, 32, 3],
"image_size": 48,
"num_classes": 10,
"learning_rate": 1e-4,
"weight_decay": 1e-4,
"epochs": 30,
"patch_size": 4,
"embed_dim": 64,
"chunk_size": 8,
"r": 2,
"num_layers": 4,
"ffn_drop": 0.2,
"attn_drop": 0.2,
"num_heads": 1,
}
if config["mixed_precision"]:
policy = mixed_precision.Policy("mixed_float16")
mixed_precision.set_global_policy(policy)
我们将使用CIFAR10数据集来运行我们的实验。此数据集包含50,000
张用于10
个类别的训练图像,标准图像大小为(32, 32, 3)
。
它还有一个包含10,000
张具有相似特征的独立图像集。有关数据集的更多信息,请参阅数据集的官方网站以及keras.datasets.cifar10
API 参考
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
(x_train, y_train), (x_val, y_val) = (
(x_train[: config["train_slice"]], y_train[: config["train_slice"]]),
(x_train[config["train_slice"] :], y_train[config["train_slice"] :]),
)
我们为对数据执行图像增强定义了单独的管道。此步骤对于使模型对变化更稳健非常重要,有助于其更好地泛化。我们执行的预处理和增强步骤如下
重新缩放
(训练,测试):此步骤用于将所有图像像素值从[0,255]
范围归一化为[0,1)
。这有助于在训练期间保持数值稳定性。调整大小
(训练,测试):我们将图像从原始大小(32, 32)调整为(52, 52)。这样做是为了考虑随机裁剪,并符合论文中给出的数据规范。随机裁剪
(训练):此层随机选择大小为(48, 48)
的图像裁剪/子区域。随机翻转
(训练):此层随机水平翻转所有图像,保持图像大小不变。# Build the `train` augmentation pipeline.
train_augmentation = keras.Sequential(
[
layers.Rescaling(1 / 255.0, dtype="float32"),
layers.Resizing(
config["input_shape"][0] + 20,
config["input_shape"][0] + 20,
dtype="float32",
),
layers.RandomCrop(config["image_size"], config["image_size"], dtype="float32"),
layers.RandomFlip("horizontal", dtype="float32"),
],
name="train_data_augmentation",
)
# Build the `val` and `test` data pipeline.
test_augmentation = keras.Sequential(
[
layers.Rescaling(1 / 255.0, dtype="float32"),
layers.Resizing(config["image_size"], config["image_size"], dtype="float32"),
],
name="test_data_augmentation",
)
# We define functions in place of simple lambda functions to run through the
# [`keras.Sequential`](/api/models/sequential#sequential-class)in order to solve this warning:
# (https://github.com/tensorflow/tensorflow/issues/56089)
def train_map_fn(image, label):
return train_augmentation(image), label
def test_map_fn(image, label):
return test_augmentation(image), label
PyDataset
对象中np.ndarray
实例,并围绕它包装一个类,包装一个keras.utils.PyDataset
,并使用Keras预处理层应用增强。class Dataset(keras.utils.PyDataset):
def __init__(
self, x_data, y_data, batch_size, preprocess_fn=None, shuffle=False, **kwargs
):
if shuffle:
perm = np.random.permutation(len(x_data))
x_data = x_data[perm]
y_data = y_data[perm]
self.x_data = x_data
self.y_data = y_data
self.preprocess_fn = preprocess_fn
self.batch_size = batch_size
super().__init__(*kwargs)
def __len__(self):
return len(self.x_data) // self.batch_size
def __getitem__(self, idx):
batch_x, batch_y = [], []
for i in range(idx * self.batch_size, (idx + 1) * self.batch_size):
x, y = self.x_data[i], self.y_data[i]
if self.preprocess_fn:
x, y = self.preprocess_fn(x, y)
batch_x.append(x)
batch_y.append(y)
batch_x = ops.stack(batch_x, axis=0)
batch_y = ops.stack(batch_y, axis=0)
return batch_x, batch_y
train_ds = Dataset(
x_train, y_train, config["batch_size"], preprocess_fn=train_map_fn, shuffle=True
)
val_ds = Dataset(x_val, y_val, config["batch_size"], preprocess_fn=test_map_fn)
test_ds = Dataset(x_test, y_test, config["batch_size"], preprocess_fn=test_map_fn)
论文摘录
在大脑中,短期记忆和长期记忆以一种特殊的方式发展。短期记忆可以非常快速地改变以对即时的感官输入和感知做出反应。相比之下,长期记忆变化缓慢,选择性强,并且涉及重复巩固。
受短期记忆和长期记忆的启发,作者引入了快速流和慢速流计算。快速流具有高容量的短期记忆,可以快速响应感官输入(Transformer)。慢速流具有长期记忆,更新速度较慢,并总结最相关的信息(循环) 。
为了实现这个想法,我们需要
快速流和慢速流导致所谓的信息不对称。这两个流通过注意力瓶颈相互作用。图1显示了模型的架构。
图1:模型架构。(来源:https://arxiv.org/abs/2205.14794) |
作者还提出了一个PyTorch风格的伪代码,如算法1所示。
算法1:PyTorch风格的伪代码。(来源:https://arxiv.org/abs/2205.14794) |
PatchEmbedding
层此自定义keras.layers.Layer
用于从图像生成补丁,并使用keras.layers.Embedding
将其转换为更高维的嵌入空间。修补操作是使用keras.layers.Conv2D
实例完成的。
完成图像的修补后,我们重新整形图像补丁以获得扁平化的表示形式,其中维度数是嵌入维度。在此阶段,我们还将位置信息注入到标记中。
获得标记后,我们将它们分块。分块操作涉及从嵌入输出中获取固定大小的序列以创建“块”,这些块将作为模型的最终输入。
class PatchEmbedding(layers.Layer):
"""Image to Patch Embedding.
Args:
image_size (`Tuple[int]`): Size of the input image.
patch_size (`Tuple[int]`): Size of the patch.
embed_dim (`int`): Dimension of the embedding.
chunk_size (`int`): Number of patches to be chunked.
"""
def __init__(
self,
image_size,
patch_size,
embed_dim,
chunk_size,
**kwargs,
):
super().__init__(**kwargs)
# Compute the patch resolution.
patch_resolution = [
image_size[0] // patch_size[0],
image_size[1] // patch_size[1],
]
# Store the parameters.
self.image_size = image_size
self.patch_size = patch_size
self.embed_dim = embed_dim
self.patch_resolution = patch_resolution
self.num_patches = patch_resolution[0] * patch_resolution[1]
# Define the positions of the patches.
self.positions = ops.arange(start=0, stop=self.num_patches, step=1)
# Create the layers.
self.projection = layers.Conv2D(
filters=embed_dim,
kernel_size=patch_size,
strides=patch_size,
name="projection",
)
self.flatten = layers.Reshape(
target_shape=(-1, embed_dim),
name="flatten",
)
self.position_embedding = layers.Embedding(
input_dim=self.num_patches,
output_dim=embed_dim,
name="position_embedding",
)
self.layernorm = keras.layers.LayerNormalization(
epsilon=1e-5,
name="layernorm",
)
self.chunking_layer = layers.Reshape(
target_shape=(self.num_patches // chunk_size, chunk_size, embed_dim),
name="chunking_layer",
)
def call(self, inputs):
# Project the inputs to the embedding dimension.
x = self.projection(inputs)
# Flatten the pathces and add position embedding.
x = self.flatten(x)
x = x + self.position_embedding(self.positions)
# Normalize the embeddings.
x = self.layernorm(x)
# Chunk the tokens.
x = self.chunking_layer(x)
return x
FeedForwardNetwork
层此自定义keras.layers.Layer
实例允许我们定义一个通用的FFN以及一个dropout。
class FeedForwardNetwork(layers.Layer):
"""Feed Forward Network.
Args:
dims (`int`): Number of units in FFN.
dropout (`float`): Dropout probability for FFN.
"""
def __init__(self, dims, dropout, **kwargs):
super().__init__(**kwargs)
# Create the layers.
self.ffn = keras.Sequential(
[
layers.Dense(units=4 * dims, activation="gelu"),
layers.Dense(units=dims),
layers.Dropout(rate=dropout),
],
name="ffn",
)
self.layernorm = layers.LayerNormalization(
epsilon=1e-5,
name="layernorm",
)
def call(self, inputs):
# Apply the FFN.
x = self.layernorm(inputs)
x = inputs + self.ffn(x)
return x
BaseAttention
层此自定义keras.layers.Layer
实例是一个super
/base
类,它包装了一个keras.layers.MultiHeadAttention
层以及其他一些组件。这为我们模型中的所有注意力层/模块提供了基本的共同点功能。
class BaseAttention(layers.Layer):
"""Base Attention Module.
Args:
num_heads (`int`): Number of attention heads.
key_dim (`int`): Size of each attention head for key.
dropout (`float`): Dropout probability for attention module.
"""
def __init__(self, num_heads, key_dim, dropout, **kwargs):
super().__init__(**kwargs)
self.multi_head_attention = layers.MultiHeadAttention(
num_heads=num_heads,
key_dim=key_dim,
dropout=dropout,
name="mha",
)
self.query_layernorm = layers.LayerNormalization(
epsilon=1e-5,
name="q_layernorm",
)
self.key_layernorm = layers.LayerNormalization(
epsilon=1e-5,
name="k_layernorm",
)
self.value_layernorm = layers.LayerNormalization(
epsilon=1e-5,
name="v_layernorm",
)
self.attention_scores = None
def call(self, input_query, key, value):
# Apply the attention module.
query = self.query_layernorm(input_query)
key = self.key_layernorm(key)
value = self.value_layernorm(value)
(attention_outputs, attention_scores) = self.multi_head_attention(
query=query,
key=key,
value=value,
return_attention_scores=True,
)
# Save the attention scores for later visualization.
self.attention_scores = attention_scores
# Add the input to the attention output.
x = input_query + attention_outputs
return x
FeedForwardNetwork
层的Attention
此自定义keras.layers.Layer
实现结合了BaseAttention
和FeedForwardNetwork
组件来开发一个块,该块将在模型中重复使用。此模块高度可定制且灵活,允许在内部层中进行更改。
class AttentionWithFFN(layers.Layer):
"""Attention with Feed Forward Network.
Args:
ffn_dims (`int`): Number of units in FFN.
ffn_dropout (`float`): Dropout probability for FFN.
num_heads (`int`): Number of attention heads.
key_dim (`int`): Size of each attention head for key.
attn_dropout (`float`): Dropout probability for attention module.
"""
def __init__(
self,
ffn_dims,
ffn_dropout,
num_heads,
key_dim,
attn_dropout,
**kwargs,
):
super().__init__(**kwargs)
# Create the layers.
self.fast_stream_attention = BaseAttention(
num_heads=num_heads,
key_dim=key_dim,
dropout=attn_dropout,
name="base_attn",
)
self.slow_stream_attention = BaseAttention(
num_heads=num_heads,
key_dim=key_dim,
dropout=attn_dropout,
name="base_attn",
)
self.ffn = FeedForwardNetwork(
dims=ffn_dims,
dropout=ffn_dropout,
name="ffn",
)
self.attention_scores = None
def build(self, input_shape):
self.built = True
def call(self, query, key, value, stream="fast"):
# Apply the attention module.
attention_layer = {
"fast": self.fast_stream_attention,
"slow": self.slow_stream_attention,
}[stream]
if len(query.shape) == 2:
query = ops.expand_dims(query, -1)
if len(key.shape) == 2:
key = ops.expand_dims(key, -1)
if len(value.shape) == 2:
value = ops.expand_dims(value, -1)
x = attention_layer(query, key, value)
# Save the attention scores for later visualization.
self.attention_scores = attention_layer.attention_scores
# Apply the FFN.
x = self.ffn(x)
return x
算法1(伪代码)使用for循环描述了循环。循环使实现更简单,但会损害训练时间。在本节中,我们将自定义循环逻辑包装在CustomRecurrentCell
中。然后,此自定义单元将与Keras RNN API包装,使整个代码可向量化。
此自定义单元作为keras.layers.Layer
实现,是模型逻辑的组成部分。单元的功能可以分为两部分:- 慢速流(时间潜变量瓶颈):
AttentionWithFFN
层,该层解析先前慢速流的输出、中间隐藏表示(即时间潜变量瓶颈中的潜变量)作为查询,以及最新快速流的输出作为键和值。此层也可以被理解为一个交叉注意力层。AttentionWithFFN
层组成。此流由n层SelfAttention
和CrossAttention
以顺序方式组成。class CustomRecurrentCell(layers.Layer):
"""Custom Recurrent Cell.
Args:
chunk_size (`int`): Number of tokens in a chunk.
r (`int`): One Cross Attention per **r** Self Attention.
num_layers (`int`): Number of layers.
ffn_dims (`int`): Number of units in FFN.
ffn_dropout (`float`): Dropout probability for FFN.
num_heads (`int`): Number of attention heads.
key_dim (`int`): Size of each attention head for key.
attn_dropout (`float`): Dropout probability for attention module.
"""
def __init__(
self,
chunk_size,
r,
num_layers,
ffn_dims,
ffn_dropout,
num_heads,
key_dim,
attn_dropout,
**kwargs,
):
super().__init__(**kwargs)
# Save the arguments.
self.chunk_size = chunk_size
self.r = r
self.num_layers = num_layers
self.ffn_dims = ffn_dims
self.ffn_droput = ffn_dropout
self.num_heads = num_heads
self.key_dim = key_dim
self.attn_dropout = attn_dropout
# Create state_size. This is important for
# custom recurrence logic.
self.state_size = chunk_size * ffn_dims
self.get_attention_scores = False
self.attention_scores = []
# Perceptual Module
perceptual_module = list()
for layer_idx in range(num_layers):
perceptual_module.append(
AttentionWithFFN(
ffn_dims=ffn_dims,
ffn_dropout=ffn_dropout,
num_heads=num_heads,
key_dim=key_dim,
attn_dropout=attn_dropout,
name=f"pm_self_attn_{layer_idx}",
)
)
if layer_idx % r == 0:
perceptual_module.append(
AttentionWithFFN(
ffn_dims=ffn_dims,
ffn_dropout=ffn_dropout,
num_heads=num_heads,
key_dim=key_dim,
attn_dropout=attn_dropout,
name=f"pm_cross_attn_ffn_{layer_idx}",
)
)
self.perceptual_module = perceptual_module
# Temporal Latent Bottleneck Module
self.tlb_module = AttentionWithFFN(
ffn_dims=ffn_dims,
ffn_dropout=ffn_dropout,
num_heads=num_heads,
key_dim=key_dim,
attn_dropout=attn_dropout,
name=f"tlb_cross_attn_ffn",
)
def build(self, input_shape):
self.built = True
def call(self, inputs, states):
# inputs => (batch, chunk_size, dims)
# states => [(batch, chunk_size, units)]
slow_stream = ops.reshape(states[0], (-1, self.chunk_size, self.ffn_dims))
fast_stream = inputs
for layer_idx, layer in enumerate(self.perceptual_module):
fast_stream = layer(
query=fast_stream, key=fast_stream, value=fast_stream, stream="fast"
)
if layer_idx % self.r == 0:
fast_stream = layer(
query=fast_stream, key=slow_stream, value=slow_stream, stream="slow"
)
slow_stream = self.tlb_module(
query=slow_stream, key=fast_stream, value=fast_stream
)
# Save the attention scores for later visualization.
if self.get_attention_scores:
self.attention_scores.append(self.tlb_module.attention_scores)
return fast_stream, [
ops.reshape(slow_stream, (-1, self.chunk_size * self.ffn_dims))
]
TemporalLatentBottleneckModel
封装完整模型在这里,我们只是包装完整模型以将其公开用于训练。
class TemporalLatentBottleneckModel(keras.Model):
"""Model Trainer.
Args:
patch_layer ([`keras.layers.Layer`](/api/layers/base_layer#layer-class)): Patching layer.
custom_cell ([`keras.layers.Layer`](/api/layers/base_layer#layer-class)): Custom Recurrent Cell.
"""
def __init__(self, patch_layer, custom_cell, unroll_loops=False, **kwargs):
super().__init__(**kwargs)
self.patch_layer = patch_layer
self.rnn = layers.RNN(custom_cell, unroll=unroll_loops, name="rnn")
self.gap = layers.GlobalAveragePooling1D(name="gap")
self.head = layers.Dense(10, activation="softmax", dtype="float32", name="head")
def call(self, inputs):
x = self.patch_layer(inputs)
x = self.rnn(x)
x = self.gap(x)
outputs = self.head(x)
return outputs
为了开始训练,我们现在分别定义组件并将它们作为参数传递给我们的包装器类,该类将准备最终模型进行训练。我们定义了一个PatchEmbed
层和一个基于CustomCell
的RNN。
# Build the model.
patch_layer = PatchEmbedding(
image_size=(config["image_size"], config["image_size"]),
patch_size=(config["patch_size"], config["patch_size"]),
embed_dim=config["embed_dim"],
chunk_size=config["chunk_size"],
)
custom_rnn_cell = CustomRecurrentCell(
chunk_size=config["chunk_size"],
r=config["r"],
num_layers=config["num_layers"],
ffn_dims=config["embed_dim"],
ffn_dropout=config["ffn_drop"],
num_heads=config["num_heads"],
key_dim=config["embed_dim"],
attn_dropout=config["attn_drop"],
)
model = TemporalLatentBottleneckModel(
patch_layer=patch_layer,
custom_cell=custom_rnn_cell,
)
我们使用AdamW
优化器,因为它已被证明在从优化角度来看的多个基准任务上表现非常出色。它是keras.optimizers.Adam
优化器的版本,并带到位权重衰减。
对于损失函数,我们使用keras.losses.SparseCategoricalCrossentropy
函数,该函数利用预测和实际 logits 之间的简单交叉熵。我们还在数据上计算准确性作为健全性检查。
optimizer = AdamW(
learning_rate=config["learning_rate"], weight_decay=config["weight_decay"]
)
model.compile(
optimizer=optimizer,
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
)
model.fit()
训练模型我们传递训练数据集并运行训练。
history = model.fit(
train_ds,
epochs=config["epochs"],
validation_data=val_ds,
)
Epoch 1/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1270s 62s/step - accuracy: 0.1166 - loss: 3.1132 - val_accuracy: 0.1486 - val_loss: 2.2887
Epoch 2/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1152s 60s/step - accuracy: 0.1798 - loss: 2.2290 - val_accuracy: 0.2249 - val_loss: 2.1083
Epoch 3/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1150s 60s/step - accuracy: 0.2371 - loss: 2.0661 - val_accuracy: 0.2610 - val_loss: 2.0294
Epoch 4/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1150s 60s/step - accuracy: 0.2631 - loss: 1.9997 - val_accuracy: 0.2765 - val_loss: 2.0008
Epoch 5/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1151s 60s/step - accuracy: 0.2869 - loss: 1.9634 - val_accuracy: 0.2985 - val_loss: 1.9578
Epoch 6/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1151s 60s/step - accuracy: 0.3048 - loss: 1.9314 - val_accuracy: 0.3055 - val_loss: 1.9324
Epoch 7/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1152s 60s/step - accuracy: 0.3136 - loss: 1.8977 - val_accuracy: 0.3209 - val_loss: 1.9050
Epoch 8/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1151s 60s/step - accuracy: 0.3238 - loss: 1.8717 - val_accuracy: 0.3231 - val_loss: 1.8874
Epoch 9/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1152s 60s/step - accuracy: 0.3414 - loss: 1.8453 - val_accuracy: 0.3445 - val_loss: 1.8334
Epoch 10/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1152s 60s/step - accuracy: 0.3469 - loss: 1.8119 - val_accuracy: 0.3591 - val_loss: 1.8019
Epoch 11/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1151s 60s/step - accuracy: 0.3648 - loss: 1.7712 - val_accuracy: 0.3793 - val_loss: 1.7513
Epoch 12/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.3730 - loss: 1.7332 - val_accuracy: 0.3667 - val_loss: 1.7464
Epoch 13/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1148s 60s/step - accuracy: 0.3918 - loss: 1.6986 - val_accuracy: 0.3995 - val_loss: 1.6843
Epoch 14/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1147s 60s/step - accuracy: 0.3975 - loss: 1.6679 - val_accuracy: 0.4026 - val_loss: 1.6602
Epoch 15/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4078 - loss: 1.6400 - val_accuracy: 0.3990 - val_loss: 1.6536
Epoch 16/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4135 - loss: 1.6224 - val_accuracy: 0.4216 - val_loss: 1.6144
Epoch 17/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1147s 60s/step - accuracy: 0.4254 - loss: 1.5884 - val_accuracy: 0.4281 - val_loss: 1.5788
Epoch 18/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4383 - loss: 1.5614 - val_accuracy: 0.4294 - val_loss: 1.5731
Epoch 19/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4419 - loss: 1.5440 - val_accuracy: 0.4338 - val_loss: 1.5633
Epoch 20/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4439 - loss: 1.5268 - val_accuracy: 0.4430 - val_loss: 1.5211
Epoch 21/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1147s 60s/step - accuracy: 0.4509 - loss: 1.5108 - val_accuracy: 0.4504 - val_loss: 1.5054
Epoch 22/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4629 - loss: 1.4828 - val_accuracy: 0.4563 - val_loss: 1.4974
Epoch 23/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1145s 60s/step - accuracy: 0.4660 - loss: 1.4682 - val_accuracy: 0.4647 - val_loss: 1.4794
Epoch 24/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4680 - loss: 1.4524 - val_accuracy: 0.4640 - val_loss: 1.4681
Epoch 25/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1145s 60s/step - accuracy: 0.4786 - loss: 1.4297 - val_accuracy: 0.4663 - val_loss: 1.4496
Epoch 26/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4889 - loss: 1.4149 - val_accuracy: 0.4769 - val_loss: 1.4350
Epoch 27/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.4925 - loss: 1.4009 - val_accuracy: 0.4808 - val_loss: 1.4317
Epoch 28/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1145s 60s/step - accuracy: 0.4907 - loss: 1.3994 - val_accuracy: 0.4810 - val_loss: 1.4307
Epoch 29/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.5000 - loss: 1.3832 - val_accuracy: 0.4844 - val_loss: 1.3996
Epoch 30/30
19/19 ━━━━━━━━━━━━━━━━━━━━ 1146s 60s/step - accuracy: 0.5076 - loss: 1.3592 - val_accuracy: 0.4890 - val_loss: 1.3961
---
## Visualize training metrics
The `model.fit()` will return a `history` object, which stores the values of the metrics
generated during the training run (but it is ephemeral and needs to be saved manually).
We now display the Loss and Accuracy curves for the training and validation sets.
```python
plt.plot(history.history["loss"], label="loss")
plt.plot(history.history["val_loss"], label="val_loss")
plt.legend()
plt.show()
plt.plot(history.history["accuracy"], label="accuracy")
plt.plot(history.history["val_accuracy"], label="val_accuracy")
plt.legend()
plt.show()
def score_to_viz(chunk_score):
# get the most attended token
chunk_viz = ops.max(chunk_score, axis=-2)
# get the mean across heads
chunk_viz = ops.mean(chunk_viz, axis=1)
return chunk_viz
# Get a batch of images and labels from the testing dataset
images, labels = next(iter(test_ds))
# Create a new model instance that is executed eagerly to allow saving
# attention scores. This also requires unrolling loops
eager_model = TemporalLatentBottleneckModel(
patch_layer=patch_layer, custom_cell=custom_rnn_cell, unroll_loops=True
)
eager_model.compile(run_eagerly=True, jit_compile=False)
model.save("weights.keras")
eager_model.load_weights("weights.keras")
# Set the get_attn_scores flag to True
eager_model.rnn.cell.get_attention_scores = True
# Run the model with the testing images and grab the
# attention scores.
outputs = eager_model(images)
list_chunk_scores = eager_model.rnn.cell.attention_scores
# Process the attention scores in order to visualize them
num_chunks = (config["image_size"] // config["patch_size"]) ** 2 // config["chunk_size"]
list_chunk_viz = [score_to_viz(x) for x in list_chunk_scores[-num_chunks:]]
chunk_viz = ops.concatenate(list_chunk_viz, axis=-1)
chunk_viz = ops.reshape(
chunk_viz,
(
config["batch_size"],
config["image_size"] // config["patch_size"],
config["image_size"] // config["patch_size"],
1,
),
)
upsampled_heat_map = layers.UpSampling2D(
size=(4, 4), interpolation="bilinear", dtype="float32"
)(chunk_viz)
# Sample a random image
index = random.randint(0, config["batch_size"])
orig_image = images[index]
overlay_image = upsampled_heat_map[index, ..., 0]
if keras.backend.backend() == "torch":
# when using the torch backend, we are required to ensure that the
# image is copied from the GPU
orig_image = orig_image.cpu().detach().numpy()
overlay_image = overlay_image.cpu().detach().numpy()
# Plot the visualization
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))
ax[0].imshow(orig_image)
ax[0].set_title("Original:")
ax[0].axis("off")
image = ax[1].imshow(orig_image)
ax[1].imshow(
overlay_image,
cmap="inferno",
alpha=0.6,
extent=image.get_extent(),
)
ax[1].set_title("TLB Attention:")
plt.show()