作者: Aritra Roy Gosthipaty,Sayak Paul(同等贡献)
创建日期 2022/04/12
上次修改日期 2023/11/20
描述:深入研究不同视觉Transformer变体的学习表示。
在本例中,我们深入研究了不同视觉Transformer (ViT) 模型学习到的表示。我们使用本例的主要目标是提供对赋予ViT从图像数据中学习能力的见解。特别是,本例讨论了一些不同的ViT分析工具的实现。
注意:当我们说“视觉Transformer”时,我们指的是一种涉及Transformer块(Vaswani 等人)的计算机视觉架构,而不一定是最初的视觉Transformer模型(Dosovitskiy 等人)。
自从最初的视觉Transformer问世以来,计算机视觉社区已经看到了许多不同的ViT变体,它们以各种方式改进了原始模型:训练改进、架构改进等等。在本例中,我们考虑以下ViT模型系列
由于预训练模型在Keras中未实现,因此我们首先尽可能忠实地实现了它们。然后,我们用官方的预训练参数填充它们。最后,我们在ImageNet-1k验证集上评估了我们的实现,以确保评估结果与原始实现相匹配。我们的实现细节可在此存储库中找到。
为了使示例简洁,我们不会详尽地将每个模型与分析方法配对。我们将在各个部分提供注释,以便您可以选择合适的片段。
要在Google Colab上运行此示例,我们需要像这样更新gdown
库
pip install -U gdown -q
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import zipfile
from io import BytesIO
import cv2
import matplotlib.pyplot as plt
import numpy as np
import requests
from PIL import Image
from sklearn.preprocessing import MinMaxScaler
import keras
from keras import ops
RESOLUTION = 224
PATCH_SIZE = 16
GITHUB_RELEASE = "https://github.com/sayakpaul/probing-vits/releases/download/v1.0.0/probing_vits.zip"
FNAME = "probing_vits.zip"
MODELS_ZIP = {
"vit_dino_base16": "Probing_ViTs/vit_dino_base16.zip",
"vit_b16_patch16_224": "Probing_ViTs/vit_b16_patch16_224.zip",
"vit_b16_patch16_224-i1k_pretrained": "Probing_ViTs/vit_b16_patch16_224-i1k_pretrained.zip",
}
对于原始的ViT模型,输入图像需要缩放到[-1, 1]
范围内。对于开头提到的其他模型系列,我们需要使用ImageNet-1k训练集的通道均值和标准差对图像进行归一化。
crop_layer = keras.layers.CenterCrop(RESOLUTION, RESOLUTION)
norm_layer = keras.layers.Normalization(
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
variance=[(0.229 * 255) ** 2, (0.224 * 255) ** 2, (0.225 * 255) ** 2],
)
rescale_layer = keras.layers.Rescaling(scale=1.0 / 127.5, offset=-1)
def preprocess_image(image, model_type, size=RESOLUTION):
# Turn the image into a numpy array and add batch dim.
image = np.array(image)
image = ops.expand_dims(image, 0)
# If model type is vit rescale the image to [-1, 1].
if model_type == "original_vit":
image = rescale_layer(image)
# Resize the image using bicubic interpolation.
resize_size = int((256 / 224) * size)
image = ops.image.resize(image, (resize_size, resize_size), interpolation="bicubic")
# Crop the image.
image = crop_layer(image)
# If model type is DeiT or DINO normalize the image.
if model_type != "original_vit":
image = norm_layer(image)
return ops.convert_to_numpy(image)
def load_image_from_url(url, model_type):
# Credit: Willi Gierke
response = requests.get(url)
image = Image.open(BytesIO(response.content))
preprocessed_image = preprocess_image(image, model_type)
return image, preprocessed_image
# ImageNet-1k label mapping file and load it.
mapping_file = keras.utils.get_file(
origin="https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt"
)
with open(mapping_file, "r") as f:
lines = f.readlines()
imagenet_int_to_str = [line.rstrip() for line in lines]
img_url = "https://dl.fbaipublicfiles.com/dino/img.png"
image, preprocessed_image = load_image_from_url(img_url, model_type="original_vit")
plt.imshow(image)
plt.axis("off")
plt.show()
zip_path = keras.utils.get_file(
fname=FNAME,
origin=GITHUB_RELEASE,
)
with zipfile.ZipFile(zip_path, "r") as zip_ref:
zip_ref.extractall("./")
os.rename("Probing ViTs", "Probing_ViTs")
def load_model(model_path: str) -> keras.Model:
with zipfile.ZipFile(model_path, "r") as zip_ref:
zip_ref.extractall("Probing_ViTs/")
model_name = model_path.split(".")[0]
inputs = keras.Input((RESOLUTION, RESOLUTION, 3))
model = keras.layers.TFSMLayer(model_name, call_endpoint="serving_default")
outputs = model(inputs, training=False)
return keras.Model(inputs, outputs=outputs)
vit_base_i21k_patch16_224 = load_model(MODELS_ZIP["vit_b16_patch16_224-i1k_pretrained"])
print("Model loaded.")
Model loaded.
更多关于模型的信息:
此模型在ImageNet-21k数据集上进行了预训练,然后在ImageNet-1k数据集上进行了微调。要了解有关如何在TensorFlow中开发此模型(使用来自此来源的预训练权重)的更多信息,请参阅此笔记本。
现在,我们使用加载的模型对测试图像运行推理。
def split_prediction_and_attention_scores(outputs):
predictions = outputs["output_1"]
attention_score_dict = {}
for key, value in outputs.items():
if key.startswith("output_2_"):
attention_score_dict[key[len("output_2_") :]] = value
return predictions, attention_score_dict
predictions, attention_score_dict = split_prediction_and_attention_scores(
vit_base_i21k_patch16_224.predict(preprocessed_image)
)
predicted_label = imagenet_int_to_str[int(np.argmax(predictions))]
print(predicted_label)
1/1 ━━━━━━━━━━━━━━━━━━━━ 5s 5s/step
toucan
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1700526824.965785 75784 device_compiler.h:187] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
attention_score_dict
包含来自每个Transformer块的每个注意力头的注意力分数(softmax输出)。
Dosovitskiy 等人和Raghu 等人使用称为“平均注意力距离”的度量来衡量不同Transformer块的每个注意力头,以了解局部和全局信息如何流入视觉Transformer。
平均注意力距离定义为查询标记与其他标记之间的距离乘以注意力权重。因此,对于单个图像
在推理模式下,图像通过网络进行前向传递后,此处会计算注意力分数。下图可能有助于您更好地理解此过程。
此动画由Ritwik Raha创建。
def compute_distance_matrix(patch_size, num_patches, length):
distance_matrix = np.zeros((num_patches, num_patches))
for i in range(num_patches):
for j in range(num_patches):
if i == j: # zero distance
continue
xi, yi = (int(i / length)), (i % length)
xj, yj = (int(j / length)), (j % length)
distance_matrix[i, j] = patch_size * np.linalg.norm([xi - xj, yi - yj])
return distance_matrix
def compute_mean_attention_dist(patch_size, attention_weights, model_type):
num_cls_tokens = 2 if "distilled" in model_type else 1
# The attention_weights shape = (batch, num_heads, num_patches, num_patches)
attention_weights = attention_weights[
..., num_cls_tokens:, num_cls_tokens:
] # Removing the CLS token
num_patches = attention_weights.shape[-1]
length = int(np.sqrt(num_patches))
assert length**2 == num_patches, "Num patches is not perfect square"
distance_matrix = compute_distance_matrix(patch_size, num_patches, length)
h, w = distance_matrix.shape
distance_matrix = distance_matrix.reshape((1, 1, h, w))
# The attention_weights along the last axis adds to 1
# this is due to the fact that they are softmax of the raw logits
# summation of the (attention_weights * distance_matrix)
# should result in an average distance per token.
mean_distances = attention_weights * distance_matrix
mean_distances = np.sum(
mean_distances, axis=-1
) # Sum along last axis to get average distance per token
mean_distances = np.mean(
mean_distances, axis=-1
) # Now average across all the tokens
return mean_distances
感谢来自 Google 的Simon Kornblith帮助我们提供了这段代码片段。可以在此处找到它。现在让我们使用这些实用程序,使用我们加载的模型和测试图像生成注意力距离图。
# Build the mean distances for every Transformer block.
mean_distances = {
f"{name}_mean_dist": compute_mean_attention_dist(
patch_size=PATCH_SIZE,
attention_weights=attention_weight,
model_type="original_vit",
)
for name, attention_weight in attention_score_dict.items()
}
# Get the number of heads from the mean distance output.
num_heads = mean_distances["transformer_block_0_att_mean_dist"].shape[-1]
# Print the shapes
print(f"Num Heads: {num_heads}.")
plt.figure(figsize=(9, 9))
for idx in range(len(mean_distances)):
mean_distance = mean_distances[f"transformer_block_{idx}_att_mean_dist"]
x = [idx] * num_heads
y = mean_distance[0, :]
plt.scatter(x=x, y=y, label=f"transformer_block_{idx}")
plt.legend(loc="lower right")
plt.xlabel("Attention Head", fontsize=14)
plt.ylabel("Attention Distance", fontsize=14)
plt.title("vit_base_i21k_patch16_224", fontsize=14)
plt.grid()
plt.show()
Num Heads: 12.
自注意力如何在输入空间中扩展?它们是局部关注输入区域还是全局关注?
自注意力的承诺是能够学习上下文依赖关系,以便模型能够关注相对于目标而言最显著的输入区域。从上面的图表中,我们可以注意到不同的注意力头产生不同的注意力距离,这表明它们使用图像的局部和全局信息。但是,当我们深入到 Transformer 块时,注意力头倾向于更多地关注全局聚合信息。
受Raghu 等人的启发,我们计算了从 ImageNet-1k 验证集中随机抽取的 1000 张图像上的平均注意力距离,并且我们对开头提到的所有模型重复了此过程。有趣的是,我们注意到以下几点
在 ImageNet-21k 上预训练 在 ImageNet-1k 上微调 |
在 ImageNet-1k 上预训练 |
---|---|
无蒸馏(来自 DeiT 的 ViT B-16) | 来自 DeiT 的蒸馏 ViT B-16 |
---|---|
要重现这些图表,请参考此笔记本。
Abnar 等人引入了“注意力展开”来量化信息如何通过 Transformer 块的自注意力层流动。原始 ViT 作者使用此方法来研究学习到的表示,指出
简而言之,我们将 ViTL/16 的所有注意力头的注意力权重取平均值,然后递归地乘以所有层的权重矩阵。这解释了所有层中标记之间注意力的混合。
我们使用了此笔记本,并修改了其中的注意力展开代码,使其与我们的模型兼容。
def attention_rollout_map(image, attention_score_dict, model_type):
num_cls_tokens = 2 if "distilled" in model_type else 1
# Stack the individual attention matrices from individual Transformer blocks.
attn_mat = ops.stack([attention_score_dict[k] for k in attention_score_dict.keys()])
attn_mat = ops.squeeze(attn_mat, axis=1)
# Average the attention weights across all heads.
attn_mat = ops.mean(attn_mat, axis=1)
# To account for residual connections, we add an identity matrix to the
# attention matrix and re-normalize the weights.
residual_attn = ops.eye(attn_mat.shape[1])
aug_attn_mat = attn_mat + residual_attn
aug_attn_mat = aug_attn_mat / ops.sum(aug_attn_mat, axis=-1)[..., None]
aug_attn_mat = ops.convert_to_numpy(aug_attn_mat)
# Recursively multiply the weight matrices.
joint_attentions = np.zeros(aug_attn_mat.shape)
joint_attentions[0] = aug_attn_mat[0]
for n in range(1, aug_attn_mat.shape[0]):
joint_attentions[n] = np.matmul(aug_attn_mat[n], joint_attentions[n - 1])
# Attention from the output token to the input space.
v = joint_attentions[-1]
grid_size = int(np.sqrt(aug_attn_mat.shape[-1]))
mask = v[0, num_cls_tokens:].reshape(grid_size, grid_size)
mask = cv2.resize(mask / mask.max(), image.size)[..., np.newaxis]
result = (mask * image).astype("uint8")
return result
现在让我们使用这些实用程序,根据我们之前从“使用模型运行常规推理”部分获得的结果生成注意力图。以下是下载每个单独模型的链接
attn_rollout_result = attention_rollout_map(
image, attention_score_dict, model_type="original_vit"
)
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 10))
fig.suptitle(f"Predicted label: {predicted_label}.", fontsize=20)
_ = ax1.imshow(image)
_ = ax2.imshow(attn_rollout_result)
ax1.set_title("Input Image", fontsize=16)
ax2.set_title("Attention Map", fontsize=16)
ax1.axis("off")
ax2.axis("off")
fig.tight_layout()
fig.subplots_adjust(top=1.35)
fig.show()
我们如何量化通过注意力层传播的信息流?
我们注意到模型能够将其注意力集中在输入图像的显著部分。我们鼓励您将此方法应用于我们提到的其他模型,并比较结果。注意力展开图将根据模型训练的任务和增强而有所不同。我们观察到 DeiT 具有最佳的展开图,这可能是由于其增强方案。
探究视觉 Transformer 表示的一种简单但有效的方法是将注意力图可视化并叠加在输入图像上。这有助于形成对模型关注内容的直觉。出于此目的,我们使用 DINO 模型,因为它产生更好的注意力热图。
# Load the model.
vit_dino_base16 = load_model(MODELS_ZIP["vit_dino_base16"])
print("Model loaded.")
# Preprocess the same image but with normlization.
img_url = "https://dl.fbaipublicfiles.com/dino/img.png"
image, preprocessed_image = load_image_from_url(img_url, model_type="dino")
# Grab the predictions.
predictions, attention_score_dict = split_prediction_and_attention_scores(
vit_dino_base16.predict(preprocessed_image)
)
Model loaded.
1/1 ━━━━━━━━━━━━━━━━━━━━ 4s 4s/step
Transformer 块包含多个头。Transformer 块中的每个头都将输入数据投影到不同的子空间。这有助于每个头关注图像的不同部分。因此,将每个注意力头图分别可视化以了解每个头关注的内容是有意义的。
注释:
def attention_heatmap(attention_score_dict, image, model_type="dino"):
num_tokens = 2 if "distilled" in model_type else 1
# Sort the Transformer blocks in order of their depth.
attention_score_list = list(attention_score_dict.keys())
attention_score_list.sort(key=lambda x: int(x.split("_")[-2]), reverse=True)
# Process the attention maps for overlay.
w_featmap = image.shape[2] // PATCH_SIZE
h_featmap = image.shape[1] // PATCH_SIZE
attention_scores = attention_score_dict[attention_score_list[0]]
# Taking the representations from CLS token.
attentions = attention_scores[0, :, 0, num_tokens:].reshape(num_heads, -1)
# Reshape the attention scores to resemble mini patches.
attentions = attentions.reshape(num_heads, w_featmap, h_featmap)
attentions = attentions.transpose((1, 2, 0))
# Resize the attention patches to 224x224 (224: 14x16).
attentions = ops.image.resize(
attentions, size=(h_featmap * PATCH_SIZE, w_featmap * PATCH_SIZE)
)
return attentions
我们可以使用与 DINO 推理相同的图像以及从结果中提取的 attention_score_dict
。
# De-normalize the image for visual clarity.
in1k_mean = np.array([0.485 * 255, 0.456 * 255, 0.406 * 255])
in1k_std = np.array([0.229 * 255, 0.224 * 255, 0.225 * 255])
preprocessed_img_orig = (preprocessed_image * in1k_std) + in1k_mean
preprocessed_img_orig = preprocessed_img_orig / 255.0
preprocessed_img_orig = ops.convert_to_numpy(ops.clip(preprocessed_img_orig, 0.0, 1.0))
# Generate the attention heatmaps.
attentions = attention_heatmap(attention_score_dict, preprocessed_img_orig)
# Plot the maps.
fig, axes = plt.subplots(nrows=3, ncols=4, figsize=(13, 13))
img_count = 0
for i in range(3):
for j in range(4):
if img_count < len(attentions):
axes[i, j].imshow(preprocessed_img_orig[0])
axes[i, j].imshow(attentions[..., img_count], cmap="inferno", alpha=0.6)
axes[i, j].title.set_text(f"Attention head: {img_count}")
axes[i, j].axis("off")
img_count += 1
我们如何定性评估注意力权重?
Transformer 块的注意力权重是在键和查询之间计算的。权重量化了键对查询的重要性。在 ViT 中,键和查询来自同一图像,因此权重决定了图像的哪个部分很重要。
将注意力权重叠加在图像上绘制出来,使我们能够很好地了解对 Transformer 而言图像的哪些部分很重要。此图定性地评估了注意力权重的用途。
在提取不重叠的补丁后,ViT 会在其空间维度上展平这些补丁,然后线性投影它们。人们可能会想知道,这些投影是什么样的?下面,我们采用 ViT B-16 模型并将其学习到的投影可视化。
def extract_weights(model, name):
for variable in model.weights:
if variable.name.startswith(name):
return variable.numpy()
# Extract the projections.
projections = extract_weights(vit_base_i21k_patch16_224, "conv_projection/kernel")
projection_dim = projections.shape[-1]
patch_h, patch_w, patch_channels = projections.shape[:-1]
# Scale the projections.
scaled_projections = MinMaxScaler().fit_transform(
projections.reshape(-1, projection_dim)
)
# Reshape the scaled projections so that the leading
# three dimensions resemble an image.
scaled_projections = scaled_projections.reshape(patch_h, patch_w, patch_channels, -1)
# Visualize the first 128 filters of the learned
# projections.
fig, axes = plt.subplots(nrows=8, ncols=16, figsize=(13, 8))
img_count = 0
limit = 128
for i in range(8):
for j in range(16):
if img_count < limit:
axes[i, j].imshow(scaled_projections[..., img_count])
axes[i, j].axis("off")
img_count += 1
fig.tight_layout()
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
WARNING:matplotlib.image:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
投影滤波器学习了什么?
当可视化时,卷积神经网络的内核显示了它们在图像中寻找的模式。这可能是圆圈,有时是线条——当组合在一起(在 ConvNet 的后期阶段)时,滤波器会转变为更复杂的形状。我们发现在此类 ConvNet 内核和 ViT 的投影滤波器之间存在明显的相似性。
Transformer 是置换不变的。这意味着它们不会考虑输入标记的空间位置。为了克服此限制,我们向输入标记添加位置信息。
位置信息可以是学习到的位置嵌入形式,也可以是手工制作的常数嵌入形式。在我们的案例中,所有三种变体的 ViT 都具有学习到的位置嵌入。
在本节中,我们可视化学习到的位置嵌入与其自身之间的相似性。下面,我们采用 ViT B-16 模型,通过取其点积来可视化位置嵌入的相似性。
position_embeddings = extract_weights(vit_base_i21k_patch16_224, "pos_embedding")
# Discard the batch dimension and the position embeddings of the
# cls token.
position_embeddings = position_embeddings.squeeze()[1:, ...]
similarity = position_embeddings @ position_embeddings.T
plt.imshow(similarity, cmap="inferno")
plt.show()
位置嵌入告诉我们什么?
该图具有明显的对角线图案。主对角线最亮,表示一个位置与其自身最相似。一个有趣的模式是重复的对角线。重复的模式描绘了一个正弦函数,其本质与Vaswani 等人提出的手工制作特征非常接近。
DINO 将注意力热图生成过程扩展到了视频。我们还应用了我们 DINO 实现到一系列视频中,并获得了类似的结果。这是一个注意力热图视频
vit-explain
。注意力热图 | 注意力展开 |
---|---|