代码示例 / 计算机视觉 / 使用 SegFormer 和 Hugging Face Transformers 进行语义分割

使用 SegFormer 和 Hugging Face Transformers 进行语义分割

作者: Sayak Paul
创建时间 2023/01/25
最后修改时间 2023/01/29
描述:微调 SegFormer 模型变体以进行语义分割。

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源代码


简介

在本示例中,我们将展示如何微调 SegFormer 模型变体以对自定义数据集执行语义分割。语义分割是将类别分配给图像中每个像素的任务。SegFormer 在 SegFormer:使用 Transformer 进行语义分割的简单高效设计 中提出。SegFormer 使用分层 Transformer 架构(称为“Mix Transformer”)作为其编码器,并使用轻量级解码器进行分割。因此,它在语义分割方面产生了最先进的性能,同时比现有模型更有效。有关更多详细信息,请查看原始论文。

segformer-arch

我们利用 Hugging Face Transformers 来加载预训练的 SegFormer 检查点并将其微调到自定义数据集上。

注意:此示例重用了以下来源的代码

要运行此示例,我们需要安装 transformers

!!pip install transformers -q
[]

加载数据

我们使用 Oxford-IIIT Pets 数据集作为本示例。我们利用 tensorflow_datasets 来加载数据集。

import tensorflow_datasets as tfds

dataset, info = tfds.load("oxford_iiit_pet:3.*.*", with_info=True)
/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/__init__.py:98: UserWarning: unable to load libtensorflow_io_plugins.so: unable to open file: libtensorflow_io_plugins.so, from paths: ['/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/libtensorflow_io_plugins.so']
caused by: ['/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/libtensorflow_io_plugins.so: undefined symbol: _ZN3tsl5mutexC1Ev']
  warnings.warn(f"unable to load libtensorflow_io_plugins.so: {e}")
/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/__init__.py:104: UserWarning: file system plugins are not loaded: unable to open file: libtensorflow_io.so, from paths: ['/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/libtensorflow_io.so']
caused by: ['/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/libtensorflow_io.so: undefined symbol: _ZNK10tensorflow4data11DatasetBase8FinalizeEPNS_15OpKernelContextESt8functionIFN3tsl8StatusOrISt10unique_ptrIS1_NS5_4core15RefCountDeleterEEEEvEE']
  warnings.warn(f"file system plugins are not loaded: {e}")

准备数据集

为了准备用于训练和评估的数据集,我们

  • 使用 SegFormer 预训练期间使用的均值和标准差对图像进行归一化。
  • 从分割掩码中减去 1,以便像素值从 0 开始。
  • 调整图像大小。
  • 转置图像,使其采用 "channels_first" 格式。这是为了使其与来自 Hugging Face Transformers 的 SegFormer 模型兼容。
import tensorflow as tf
from tensorflow.keras import backend

image_size = 512
mean = tf.constant([0.485, 0.456, 0.406])
std = tf.constant([0.229, 0.224, 0.225])


def normalize(input_image, input_mask):
    input_image = tf.image.convert_image_dtype(input_image, tf.float32)
    input_image = (input_image - mean) / tf.maximum(std, backend.epsilon())
    input_mask -= 1
    return input_image, input_mask


def load_image(datapoint):
    input_image = tf.image.resize(datapoint["image"], (image_size, image_size))
    input_mask = tf.image.resize(
        datapoint["segmentation_mask"],
        (image_size, image_size),
        method="bilinear",
    )

    input_image, input_mask = normalize(input_image, input_mask)
    input_image = tf.transpose(input_image, (2, 0, 1))
    return {"pixel_values": input_image, "labels": tf.squeeze(input_mask)}

现在我们使用上述实用程序来准备 tf.data.Dataset 对象,包括 prefetch() 以提高性能。更改 batch_size 以匹配您用于训练的 GPU 上的 GPU 内存大小。

auto = tf.data.AUTOTUNE
batch_size = 4

train_ds = (
    dataset["train"]
    .cache()
    .shuffle(batch_size * 10)
    .map(load_image, num_parallel_calls=auto)
    .batch(batch_size)
    .prefetch(auto)
)
test_ds = (
    dataset["test"]
    .map(load_image, num_parallel_calls=auto)
    .batch(batch_size)
    .prefetch(auto)
)

我们可以检查输入图像及其分割图的形状

print(train_ds.element_spec)
{'pixel_values': TensorSpec(shape=(None, 3, 512, 512), dtype=tf.float32, name=None), 'labels': TensorSpec(shape=(None, 512, 512), dtype=tf.float32, name=None)}

可视化数据集

import matplotlib.pyplot as plt


def display(display_list):
    plt.figure(figsize=(15, 15))

    title = ["Input Image", "True Mask", "Predicted Mask"]

    for i in range(len(display_list)):
        plt.subplot(1, len(display_list), i + 1)
        plt.title(title[i])
        plt.imshow(tf.keras.utils.array_to_img(display_list[i]))
        plt.axis("off")
    plt.show()


for samples in train_ds.take(2):
    sample_image, sample_mask = samples["pixel_values"][0], samples["labels"][0]
    sample_image = tf.transpose(sample_image, (1, 2, 0))
    sample_mask = tf.expand_dims(sample_mask, -1)
    display([sample_image, sample_mask])

png

png


加载预训练的 SegFormer 检查点

现在我们从 Hugging Face Transformers 中加载预训练的 SegFormer 模型变体。SegFormer 模型有多种变体,称为 MiT-B0MiT-B5。您可以在 此处 找到这些检查点。我们加载最小的变体 Mix-B0,它在推理效率和预测性能之间取得了良好的平衡。

from transformers import TFSegformerForSemanticSegmentation

model_checkpoint = "nvidia/mit-b0"
id2label = {0: "outer", 1: "inner", 2: "border"}
label2id = {label: id for id, label in id2label.items()}
num_labels = len(id2label)
model = TFSegformerForSemanticSegmentation.from_pretrained(
    model_checkpoint,
    num_labels=num_labels,
    id2label=id2label,
    label2id=label2id,
    ignore_mismatched_sizes=True,
)
WARNING:tensorflow:5 out of the last 5 calls to <function Conv._jit_compiled_convolution_op at 0x7fa8cc1139e0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://tensorflowcn.cn/guide/function#controlling_retracing and https://tensorflowcn.cn/api_docs/python/tf/function for  more details.

WARNING:tensorflow:5 out of the last 5 calls to <function Conv._jit_compiled_convolution_op at 0x7fa8cc1139e0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://tensorflowcn.cn/guide/function#controlling_retracing and https://tensorflowcn.cn/api_docs/python/tf/function for  more details.

WARNING:tensorflow:6 out of the last 6 calls to <function Conv._jit_compiled_convolution_op at 0x7fa8bde37440> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://tensorflowcn.cn/guide/function#controlling_retracing and https://tensorflowcn.cn/api_docs/python/tf/function for  more details.

WARNING:tensorflow:6 out of the last 6 calls to <function Conv._jit_compiled_convolution_op at 0x7fa8bde37440> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://tensorflowcn.cn/guide/function#controlling_retracing and https://tensorflowcn.cn/api_docs/python/tf/function for  more details.
Some layers from the model checkpoint at nvidia/mit-b0 were not used when initializing TFSegformerForSemanticSegmentation: ['classifier']
- This IS expected if you are initializing TFSegformerForSemanticSegmentation from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
- This IS NOT expected if you are initializing TFSegformerForSemanticSegmentation from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
Some layers of TFSegformerForSemanticSegmentation were not initialized from the model checkpoint at nvidia/mit-b0 and are newly initialized: ['decode_head']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.

警告告诉我们,我们丢弃了一些权重,并重新初始化了一些其他权重。别慌!这绝对正常。由于我们使用的是自定义数据集,其语义类标签集与预训练数据集不同,因此 TFSegformerForSemanticSegmentation 正在初始化新的解码器头。

现在我们可以初始化优化器,并用它编译模型。


编译模型

lr = 0.00006
optimizer = tf.keras.optimizers.Adam(learning_rate=lr)
model.compile(optimizer=optimizer)
No loss specified in compile() - the model's internal loss computation will be used as the loss. Don't panic - this is a common way to train TensorFlow models in Transformers! To disable this behaviour please pass a loss argument, or explicitly pass `loss=None` if you do not want your model to compute a loss.

注意,我们没有使用任何损失函数来编译模型。这是因为,当我们提供标签以及输入图像时,模型的前向传播 实现 了损失计算部分。在计算损失后,模型返回一个结构化的 dataclass 对象,该对象随后用于指导训练过程。

使用编译后的模型,我们可以继续并对其调用 fit() 以开始微调过程!


预测回调以监控训练进度

它有助于我们在模型正在微调时可视化一些样本预测,从而帮助我们监控模型的进度。此回调来自 此教程 的启发。

from IPython.display import clear_output


def create_mask(pred_mask):
    pred_mask = tf.math.argmax(pred_mask, axis=1)
    pred_mask = tf.expand_dims(pred_mask, -1)
    return pred_mask[0]


def show_predictions(dataset=None, num=1):
    if dataset:
        for sample in dataset.take(num):
            images, masks = sample["pixel_values"], sample["labels"]
            masks = tf.expand_dims(masks, -1)
            pred_masks = model.predict(images).logits
            images = tf.transpose(images, (0, 2, 3, 1))
            display([images[0], masks[0], create_mask(pred_masks)])
    else:
        display(
            [
                sample_image,
                sample_mask,
                create_mask(model.predict(tf.expand_dims(sample_image, 0))),
            ]
        )


class DisplayCallback(tf.keras.callbacks.Callback):
    def __init__(self, dataset, **kwargs):
        super().__init__(**kwargs)
        self.dataset = dataset

    def on_epoch_end(self, epoch, logs=None):
        clear_output(wait=True)
        show_predictions(self.dataset)
        print("\nSample Prediction after epoch {}\n".format(epoch + 1))

训练模型

# Increase the number of epochs if the results are not of expected quality.
epochs = 5

history = model.fit(
    train_ds,
    validation_data=test_ds,
    callbacks=[DisplayCallback(test_ds)],
    epochs=epochs,
)
1/1 [==============================] - 0s 54ms/step

png

Sample Prediction after epoch 5
920/920 [==============================] - 89s 97ms/step - loss: 0.1742 - val_loss: 0.1927

推理

我们在测试集中的一些样本上执行推理。

show_predictions(test_ds, 5)
1/1 [==============================] - 0s 54ms/step

png

1/1 [==============================] - 0s 54ms/step

png

1/1 [==============================] - 0s 53ms/step

png

1/1 [==============================] - 0s 53ms/step

png

1/1 [==============================] - 0s 53ms/step

png


结论

在本示例中,我们学习了如何对自定义数据集进行语义分割,微调 SegFormer 模型变体。为了简洁起见,示例保持简短。但是,您可以进一步尝试一些事情

  • 考虑使用数据增强来提高结果。
  • 使用更大的 SegFormer 模型检查点来查看结果的影响。
  • 将微调后的模型推送到 Hugging Face 上,以便轻松与社区共享。只需执行 model.push_to_hub("your-username/your-awesome-model") 即可。然后,您可以通过执行 TFSegformerForSemanticSegmentation.from_pretrained("your-username/your-awesome-model") 来加载模型。 这里 是一个端到端示例,如果您正在寻找参考。
  • 如果您希望在微调模型时将模型检查点推送到 Hub 上,则可以使用 PushToHubCallback Keras 回调。 这里 是一个示例。 这里 是使用此回调创建的模型库的示例。