作者: Sayak Paul
创建日期 2021/03/19
上次修改日期 2023/12/29
描述:计算机视觉自监督学习方法的实现。
自监督学习 (SSL) 是表示学习领域一个有趣的学习分支。SSL 系统尝试从一批未标记的数据点中制定一个监督信号。例如,我们训练一个深度神经网络来预测给定的一组单词中的下一个单词。在文献中,这些任务被称为预训练任务或辅助任务。如果我们在大型数据集上训练这样的网络(例如维基百科文本语料库),它会学习非常有效的表示,这些表示可以很好地转移到下游任务中。像BERT、GPT-3、ELMo这样的语言模型都受益于此。
就像语言模型一样,我们可以使用类似的方法训练计算机视觉模型。为了使计算机视觉中的方法有效,我们需要制定学习任务,以便底层模型(深度神经网络)能够理解视觉数据中存在的语义信息。一项这样的任务是让模型对比同一图像的两个不同版本。希望通过这种方式,模型能够学习表示,其中相似的图像尽可能地组合在一起,而不同的图像则距离较远。
在本例中,我们将实现一个名为**SimSiam**的系统,该系统在探索简单的 Siamese 表示学习中提出。其实现如下:
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
import keras_cv
from keras import ops
import matplotlib.pyplot as plt
import numpy as np
AUTO = tf.data.AUTOTUNE
BATCH_SIZE = 128
EPOCHS = 5
CROP_TO = 32
SEED = 26
PROJECT_DIM = 2048
LATENT_DIM = 512
WEIGHT_DECAY = 0.0005
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
print(f"Total training examples: {len(x_train)}")
print(f"Total test examples: {len(x_test)}")
Total training examples: 50000
Total test examples: 10000
正如SimCLR中所研究的,拥有正确的数据增强管道对于 SSL 系统在计算机视觉中有效工作至关重要。似乎最重要的两个特定增强转换是:1.) 随机调整大小的裁剪和 2.) 颜色失真。大多数其他计算机视觉 SSL 系统(例如BYOL、MoCoV2、SwAV等)在其训练管道中包含这些转换。
strength = [0.4, 0.4, 0.4, 0.1]
random_flip = layers.RandomFlip(mode="horizontal_and_vertical")
random_crop = layers.RandomCrop(CROP_TO, CROP_TO)
random_brightness = layers.RandomBrightness(0.8 * strength[0])
random_contrast = layers.RandomContrast((1 - 0.8 * strength[1], 1 + 0.8 * strength[1]))
random_saturation = keras_cv.layers.RandomSaturation(
(0.5 - 0.8 * strength[2], 0.5 + 0.8 * strength[2])
)
random_hue = keras_cv.layers.RandomHue(0.2 * strength[3], [0,255])
grayscale = keras_cv.layers.Grayscale()
def flip_random_crop(image):
# With random crops we also apply horizontal flipping.
image = random_flip(image)
image = random_crop(image)
return image
def color_jitter(x, strength=[0.4, 0.4, 0.3, 0.1]):
x = random_brightness(x)
x = random_contrast(x)
x = random_saturation(x)
x = random_hue(x)
# Affine transformations can disturb the natural range of
# RGB images, hence this is needed.
x = ops.clip(x, 0, 255)
return x
def color_drop(x):
x = grayscale(x)
x = ops.tile(x, [1, 1, 3])
return x
def random_apply(func, x, p):
if keras.random.uniform([], minval=0, maxval=1) < p:
return func(x)
else:
return x
def custom_augment(image):
# As discussed in the SimCLR paper, the series of augmentation
# transformations (except for random crops) need to be applied
# randomly to impose translational invariance.
image = flip_random_crop(image)
image = random_apply(color_jitter, image, p=0.8)
image = random_apply(color_drop, image, p=0.2)
return image
需要注意的是,增强管道通常取决于我们处理的数据集的各种属性。例如,如果数据集中图像高度以对象为中心,则以非常高的概率进行随机裁剪可能会损害训练性能。
现在让我们将我们的增强管道应用于我们的数据集并可视化一些输出。
Dataset
对象在这里,我们创建了数据集的两个不同版本,没有任何真实标签。
ssl_ds_one = tf.data.Dataset.from_tensor_slices(x_train)
ssl_ds_one = (
ssl_ds_one.shuffle(1024, seed=SEED)
.map(custom_augment, num_parallel_calls=AUTO)
.batch(BATCH_SIZE)
.prefetch(AUTO)
)
ssl_ds_two = tf.data.Dataset.from_tensor_slices(x_train)
ssl_ds_two = (
ssl_ds_two.shuffle(1024, seed=SEED)
.map(custom_augment, num_parallel_calls=AUTO)
.batch(BATCH_SIZE)
.prefetch(AUTO)
)
# We then zip both of these datasets.
ssl_ds = tf.data.Dataset.zip((ssl_ds_one, ssl_ds_two))
# Visualize a few augmented images.
sample_images_one = next(iter(ssl_ds_one))
plt.figure(figsize=(10, 10))
for n in range(25):
ax = plt.subplot(5, 5, n + 1)
plt.imshow(sample_images_one[n].numpy().astype("int"))
plt.axis("off")
plt.show()
# Ensure that the different versions of the dataset actually contain
# identical images.
sample_images_two = next(iter(ssl_ds_two))
plt.figure(figsize=(10, 10))
for n in range(25):
ax = plt.subplot(5, 5, n + 1)
plt.imshow(sample_images_two[n].numpy().astype("int"))
plt.axis("off")
plt.show()
请注意,samples_images_one
和 sample_images_two
中的图像本质上是相同的,但增强方式不同。
我们使用专门针对 CIFAR10 数据集配置的 ResNet20 实现。代码取自keras-idiomatic-programmer存储库。这些架构的超参数参考自原始论文的第 3 节和附录 A。
!wget -q https://git.io/JYx2x -O resnet_cifar10_v2.py
import resnet_cifar10_v2
N = 2
DEPTH = N * 9 + 2
NUM_BLOCKS = ((DEPTH - 2) // 9) - 1
def get_encoder():
# Input and backbone.
inputs = layers.Input((CROP_TO, CROP_TO, 3))
x = layers.Rescaling(scale=1.0 / 127.5, offset=-1)(
inputs
)
x = resnet_cifar10_v2.stem(x)
x = resnet_cifar10_v2.learner(x, NUM_BLOCKS)
x = layers.GlobalAveragePooling2D(name="backbone_pool")(x)
# Projection head.
x = layers.Dense(
PROJECT_DIM, use_bias=False, kernel_regularizer=regularizers.l2(WEIGHT_DECAY)
)(x)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
x = layers.Dense(
PROJECT_DIM, use_bias=False, kernel_regularizer=regularizers.l2(WEIGHT_DECAY)
)(x)
outputs = layers.BatchNormalization()(x)
return keras.Model(inputs, outputs, name="encoder")
def get_predictor():
model = keras.Sequential(
[
# Note the AutoEncoder-like structure.
layers.Input((PROJECT_DIM,)),
layers.Dense(
LATENT_DIM,
use_bias=False,
kernel_regularizer=regularizers.l2(WEIGHT_DECAY),
),
layers.ReLU(),
layers.BatchNormalization(),
layers.Dense(PROJECT_DIM),
],
name="predictor",
)
return model
使用这些方法训练网络的主要原因之一是将学习到的表示用于下游任务,如分类。这就是为什么这个特定的训练阶段也被称为预训练。
我们首先定义损失函数。
def compute_loss(p, z):
# The authors of SimSiam emphasize the impact of
# the `stop_gradient` operator in the paper as it
# has an important role in the overall optimization.
z = ops.stop_gradient(z)
p = keras.utils.normalize(p, axis=1, order=2)
z = keras.utils.normalize(z, axis=1, order=2)
# Negative cosine similarity (minimizing this is
# equivalent to maximizing the similarity).
return -ops.mean(ops.sum((p * z), axis=1))
然后,我们通过覆盖 keras.Model
类的 train_step()
函数来定义我们的训练循环。
class SimSiam(keras.Model):
def __init__(self, encoder, predictor):
super().__init__()
self.encoder = encoder
self.predictor = predictor
self.loss_tracker = keras.metrics.Mean(name="loss")
@property
def metrics(self):
return [self.loss_tracker]
def train_step(self, data):
# Unpack the data.
ds_one, ds_two = data
# Forward pass through the encoder and predictor.
with tf.GradientTape() as tape:
z1, z2 = self.encoder(ds_one), self.encoder(ds_two)
p1, p2 = self.predictor(z1), self.predictor(z2)
# Note that here we are enforcing the network to match
# the representations of two differently augmented batches
# of data.
loss = compute_loss(p1, z2) / 2 + compute_loss(p2, z1) / 2
# Compute gradients and update the parameters.
learnable_params = (
self.encoder.trainable_variables + self.predictor.trainable_variables
)
gradients = tape.gradient(loss, learnable_params)
self.optimizer.apply_gradients(zip(gradients, learnable_params))
# Monitor loss.
self.loss_tracker.update_state(loss)
return {"loss": self.loss_tracker.result()}
出于本例的目的,我们将仅训练模型 5 个 epoch。实际上,这至少应该为 100 个 epoch。
# Create a cosine decay learning scheduler.
num_training_samples = len(x_train)
steps = EPOCHS * (num_training_samples // BATCH_SIZE)
lr_decayed_fn = keras.optimizers.schedules.CosineDecay(
initial_learning_rate=0.03, decay_steps=steps
)
# Create an early stopping callback.
early_stopping = keras.callbacks.EarlyStopping(
monitor="loss", patience=5, restore_best_weights=True
)
# Compile model and start training.
simsiam = SimSiam(get_encoder(), get_predictor())
simsiam.compile(optimizer=keras.optimizers.SGD(lr_decayed_fn, momentum=0.6))
history = simsiam.fit(ssl_ds, epochs=EPOCHS, callbacks=[early_stopping])
# Visualize the training progress of the model.
plt.plot(history.history["loss"])
plt.grid()
plt.title("Negative Cosine Similairty")
plt.show()
Epoch 1/5
391/391 [==============================] - 33s 42ms/step - loss: -0.8973
Epoch 2/5
391/391 [==============================] - 16s 40ms/step - loss: -0.9129
Epoch 3/5
391/391 [==============================] - 16s 40ms/step - loss: -0.9165
Epoch 4/5
391/391 [==============================] - 16s 40ms/step - loss: -0.9176
Epoch 5/5
391/391 [==============================] - 16s 40ms/step - loss: -0.9182
如果您的解决方案在使用不同的数据集和不同的主干架构时非常快地接近 -1(损失的最小值),这可能是由于表示崩溃。这是一种现象,其中编码器对所有图像产生相似的输出。在这种情况下,需要额外的超参数调整,特别是在以下方面
在计算机视觉中(或任何其他此类预训练方法)评估 SSL 方法最常用的方法是在训练好的主干模型(在本例中为 ResNet20)的冻结特征上学习线性分类器,并在看不见的图像上评估分类器。其他方法包括对源数据集或甚至目标数据集进行 微调,其中存在 5% 或 10% 的标签。实际上,我们可以将主干模型用于任何下游任务,例如语义分割、目标检测等,其中主干模型通常使用纯监督学习进行预训练。
# We first create labeled `Dataset` objects.
train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train))
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test))
# Then we shuffle, batch, and prefetch this dataset for performance. We
# also apply random resized crops as an augmentation but only to the
# training set.
train_ds = (
train_ds.shuffle(1024)
.map(lambda x, y: (flip_random_crop(x), y), num_parallel_calls=AUTO)
.batch(BATCH_SIZE)
.prefetch(AUTO)
)
test_ds = test_ds.batch(BATCH_SIZE).prefetch(AUTO)
# Extract the backbone ResNet20.
backbone = keras.Model(
simsiam.encoder.input, simsiam.encoder.get_layer("backbone_pool").output
)
# We then create our linear classifier and train it.
backbone.trainable = False
inputs = layers.Input((CROP_TO, CROP_TO, 3))
x = backbone(inputs, training=False)
outputs = layers.Dense(10, activation="softmax")(x)
linear_model = keras.Model(inputs, outputs, name="linear_model")
# Compile model and start training.
linear_model.compile(
loss="sparse_categorical_crossentropy",
metrics=["accuracy"],
optimizer=keras.optimizers.SGD(lr_decayed_fn, momentum=0.9),
)
history = linear_model.fit(
train_ds, validation_data=test_ds, epochs=EPOCHS, callbacks=[early_stopping]
)
_, test_acc = linear_model.evaluate(test_ds)
print("Test accuracy: {:.2f}%".format(test_acc * 100))
Epoch 1/5
391/391 [==============================] - 7s 11ms/step - loss: 3.8072 - accuracy: 0.1527 - val_loss: 3.7449 - val_accuracy: 0.2046
Epoch 2/5
391/391 [==============================] - 3s 8ms/step - loss: 3.7356 - accuracy: 0.2107 - val_loss: 3.7055 - val_accuracy: 0.2308
Epoch 3/5
391/391 [==============================] - 3s 8ms/step - loss: 3.7036 - accuracy: 0.2228 - val_loss: 3.6874 - val_accuracy: 0.2329
Epoch 4/5
391/391 [==============================] - 3s 8ms/step - loss: 3.6893 - accuracy: 0.2276 - val_loss: 3.6808 - val_accuracy: 0.2334
Epoch 5/5
391/391 [==============================] - 3s 9ms/step - loss: 3.6845 - accuracy: 0.2305 - val_loss: 3.6798 - val_accuracy: 0.2339
79/79 [==============================] - 1s 7ms/step - loss: 3.6798 - accuracy: 0.2339
Test accuracy: 23.39%