作者: Srihari Humbarwadi
创建时间 2020/05/17
最后修改时间 2023/07/10
描述:实现RetinaNet:用于密集目标检测的Focal Loss。
目标检测是计算机视觉中一个非常重要的课题。模型需要在图像中定位存在的物体,同时将其分类到不同的类别中。目标检测模型可以大致分为“单阶段”和“双阶段”检测器。双阶段检测器通常更准确,但代价是速度较慢。在本例中,我们将实现RetinaNet,这是一种流行的单阶段检测器,它既准确又运行速度快。RetinaNet使用特征金字塔网络有效地检测多尺度物体,并引入了一种新的损失函数——Focal Loss,以缓解极端的前景-背景类别不平衡问题。
参考文献
import os
import re
import zipfile
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt
import tensorflow_datasets as tfds
在整个COCO2017数据集(约118k张图像)上训练需要花费大量时间,因此在本例中,我们将使用约500张图像的较小子集进行训练。
url = "https://github.com/srihari-humbarwadi/datasets/releases/download/v0.1.0/data.zip"
filename = os.path.join(os.getcwd(), "data.zip")
keras.utils.get_file(filename, url)
with zipfile.ZipFile("data.zip", "r") as z_fp:
z_fp.extractall("./")
Downloading data from https://github.com/srihari-humbarwadi/datasets/releases/download/v0.1.0/data.zip
560529408/560525318 [==============================] - 7s 0us/step
560537600/560525318 [==============================] - 7s 0us/step
边界框可以用多种方式表示,最常见的格式是
[xmin, ymin, xmax, ymax]
[x, y, width, height]
由于我们需要两种格式,因此我们将实现用于在格式之间转换的函数。
def swap_xy(boxes):
"""Swaps order the of x and y coordinates of the boxes.
Arguments:
boxes: A tensor with shape `(num_boxes, 4)` representing bounding boxes.
Returns:
swapped boxes with shape same as that of boxes.
"""
return tf.stack([boxes[:, 1], boxes[:, 0], boxes[:, 3], boxes[:, 2]], axis=-1)
def convert_to_xywh(boxes):
"""Changes the box format to center, width and height.
Arguments:
boxes: A tensor of rank 2 or higher with a shape of `(..., num_boxes, 4)`
representing bounding boxes where each box is of the format
`[xmin, ymin, xmax, ymax]`.
Returns:
converted boxes with shape same as that of boxes.
"""
return tf.concat(
[(boxes[..., :2] + boxes[..., 2:]) / 2.0, boxes[..., 2:] - boxes[..., :2]],
axis=-1,
)
def convert_to_corners(boxes):
"""Changes the box format to corner coordinates
Arguments:
boxes: A tensor of rank 2 or higher with a shape of `(..., num_boxes, 4)`
representing bounding boxes where each box is of the format
`[x, y, width, height]`.
Returns:
converted boxes with shape same as that of boxes.
"""
return tf.concat(
[boxes[..., :2] - boxes[..., 2:] / 2.0, boxes[..., :2] + boxes[..., 2:] / 2.0],
axis=-1,
)
正如我们将在后面的示例中看到的,我们将根据重叠程度将真实框分配给锚框。这将要求我们计算所有锚框和真实框对之间的交并比(IOU)。
def compute_iou(boxes1, boxes2):
"""Computes pairwise IOU matrix for given two sets of boxes
Arguments:
boxes1: A tensor with shape `(N, 4)` representing bounding boxes
where each box is of the format `[x, y, width, height]`.
boxes2: A tensor with shape `(M, 4)` representing bounding boxes
where each box is of the format `[x, y, width, height]`.
Returns:
pairwise IOU matrix with shape `(N, M)`, where the value at ith row
jth column holds the IOU between ith box and jth box from
boxes1 and boxes2 respectively.
"""
boxes1_corners = convert_to_corners(boxes1)
boxes2_corners = convert_to_corners(boxes2)
lu = tf.maximum(boxes1_corners[:, None, :2], boxes2_corners[:, :2])
rd = tf.minimum(boxes1_corners[:, None, 2:], boxes2_corners[:, 2:])
intersection = tf.maximum(0.0, rd - lu)
intersection_area = intersection[:, :, 0] * intersection[:, :, 1]
boxes1_area = boxes1[:, 2] * boxes1[:, 3]
boxes2_area = boxes2[:, 2] * boxes2[:, 3]
union_area = tf.maximum(
boxes1_area[:, None] + boxes2_area - intersection_area, 1e-8
)
return tf.clip_by_value(intersection_area / union_area, 0.0, 1.0)
def visualize_detections(
image, boxes, classes, scores, figsize=(7, 7), linewidth=1, color=[0, 0, 1]
):
"""Visualize Detections"""
image = np.array(image, dtype=np.uint8)
plt.figure(figsize=figsize)
plt.axis("off")
plt.imshow(image)
ax = plt.gca()
for box, _cls, score in zip(boxes, classes, scores):
text = "{}: {:.2f}".format(_cls, score)
x1, y1, x2, y2 = box
w, h = x2 - x1, y2 - y1
patch = plt.Rectangle(
[x1, y1], w, h, fill=False, edgecolor=color, linewidth=linewidth
)
ax.add_patch(patch)
ax.text(
x1,
y1,
text,
bbox={"facecolor": color, "alpha": 0.4},
clip_box=ax.clipbox,
clip_on=True,
)
plt.show()
return ax
锚框是模型用来预测物体边界框的固定大小的框。它通过回归物体中心位置与锚框中心位置之间的偏移量来实现这一点,然后使用锚框的宽度和高度来预测物体的相对尺度。在RetinaNet的情况下,给定特征图上的每个位置都有九个锚框(在三个尺度和三个比例下)。
class AnchorBox:
"""Generates anchor boxes.
This class has operations to generate anchor boxes for feature maps at
strides `[8, 16, 32, 64, 128]`. Where each anchor each box is of the
format `[x, y, width, height]`.
Attributes:
aspect_ratios: A list of float values representing the aspect ratios of
the anchor boxes at each location on the feature map
scales: A list of float values representing the scale of the anchor boxes
at each location on the feature map.
num_anchors: The number of anchor boxes at each location on feature map
areas: A list of float values representing the areas of the anchor
boxes for each feature map in the feature pyramid.
strides: A list of float value representing the strides for each feature
map in the feature pyramid.
"""
def __init__(self):
self.aspect_ratios = [0.5, 1.0, 2.0]
self.scales = [2 ** x for x in [0, 1 / 3, 2 / 3]]
self._num_anchors = len(self.aspect_ratios) * len(self.scales)
self._strides = [2 ** i for i in range(3, 8)]
self._areas = [x ** 2 for x in [32.0, 64.0, 128.0, 256.0, 512.0]]
self._anchor_dims = self._compute_dims()
def _compute_dims(self):
"""Computes anchor box dimensions for all ratios and scales at all levels
of the feature pyramid.
"""
anchor_dims_all = []
for area in self._areas:
anchor_dims = []
for ratio in self.aspect_ratios:
anchor_height = tf.math.sqrt(area / ratio)
anchor_width = area / anchor_height
dims = tf.reshape(
tf.stack([anchor_width, anchor_height], axis=-1), [1, 1, 2]
)
for scale in self.scales:
anchor_dims.append(scale * dims)
anchor_dims_all.append(tf.stack(anchor_dims, axis=-2))
return anchor_dims_all
def _get_anchors(self, feature_height, feature_width, level):
"""Generates anchor boxes for a given feature map size and level
Arguments:
feature_height: An integer representing the height of the feature map.
feature_width: An integer representing the width of the feature map.
level: An integer representing the level of the feature map in the
feature pyramid.
Returns:
anchor boxes with the shape
`(feature_height * feature_width * num_anchors, 4)`
"""
rx = tf.range(feature_width, dtype=tf.float32) + 0.5
ry = tf.range(feature_height, dtype=tf.float32) + 0.5
centers = tf.stack(tf.meshgrid(rx, ry), axis=-1) * self._strides[level - 3]
centers = tf.expand_dims(centers, axis=-2)
centers = tf.tile(centers, [1, 1, self._num_anchors, 1])
dims = tf.tile(
self._anchor_dims[level - 3], [feature_height, feature_width, 1, 1]
)
anchors = tf.concat([centers, dims], axis=-1)
return tf.reshape(
anchors, [feature_height * feature_width * self._num_anchors, 4]
)
def get_anchors(self, image_height, image_width):
"""Generates anchor boxes for all the feature maps of the feature pyramid.
Arguments:
image_height: Height of the input image.
image_width: Width of the input image.
Returns:
anchor boxes for all the feature maps, stacked as a single tensor
with shape `(total_anchors, 4)`
"""
anchors = [
self._get_anchors(
tf.math.ceil(image_height / 2 ** i),
tf.math.ceil(image_width / 2 ** i),
i,
)
for i in range(3, 8)
]
return tf.concat(anchors, axis=0)
图像预处理包括两个步骤
除了图像之外,如果需要,边界框也会重新缩放和翻转。
def random_flip_horizontal(image, boxes):
"""Flips image and boxes horizontally with 50% chance
Arguments:
image: A 3-D tensor of shape `(height, width, channels)` representing an
image.
boxes: A tensor with shape `(num_boxes, 4)` representing bounding boxes,
having normalized coordinates.
Returns:
Randomly flipped image and boxes
"""
if tf.random.uniform(()) > 0.5:
image = tf.image.flip_left_right(image)
boxes = tf.stack(
[1 - boxes[:, 2], boxes[:, 1], 1 - boxes[:, 0], boxes[:, 3]], axis=-1
)
return image, boxes
def resize_and_pad_image(
image, min_side=800.0, max_side=1333.0, jitter=[640, 1024], stride=128.0
):
"""Resizes and pads image while preserving aspect ratio.
1. Resizes images so that the shorter side is equal to `min_side`
2. If the longer side is greater than `max_side`, then resize the image
with longer side equal to `max_side`
3. Pad with zeros on right and bottom to make the image shape divisible by
`stride`
Arguments:
image: A 3-D tensor of shape `(height, width, channels)` representing an
image.
min_side: The shorter side of the image is resized to this value, if
`jitter` is set to None.
max_side: If the longer side of the image exceeds this value after
resizing, the image is resized such that the longer side now equals to
this value.
jitter: A list of floats containing minimum and maximum size for scale
jittering. If available, the shorter side of the image will be
resized to a random value in this range.
stride: The stride of the smallest feature map in the feature pyramid.
Can be calculated using `image_size / feature_map_size`.
Returns:
image: Resized and padded image.
image_shape: Shape of the image before padding.
ratio: The scaling factor used to resize the image
"""
image_shape = tf.cast(tf.shape(image)[:2], dtype=tf.float32)
if jitter is not None:
min_side = tf.random.uniform((), jitter[0], jitter[1], dtype=tf.float32)
ratio = min_side / tf.reduce_min(image_shape)
if ratio * tf.reduce_max(image_shape) > max_side:
ratio = max_side / tf.reduce_max(image_shape)
image_shape = ratio * image_shape
image = tf.image.resize(image, tf.cast(image_shape, dtype=tf.int32))
padded_image_shape = tf.cast(
tf.math.ceil(image_shape / stride) * stride, dtype=tf.int32
)
image = tf.image.pad_to_bounding_box(
image, 0, 0, padded_image_shape[0], padded_image_shape[1]
)
return image, image_shape, ratio
def preprocess_data(sample):
"""Applies preprocessing step to a single sample
Arguments:
sample: A dict representing a single training sample.
Returns:
image: Resized and padded image with random horizontal flipping applied.
bbox: Bounding boxes with the shape `(num_objects, 4)` where each box is
of the format `[x, y, width, height]`.
class_id: An tensor representing the class id of the objects, having
shape `(num_objects,)`.
"""
image = sample["image"]
bbox = swap_xy(sample["objects"]["bbox"])
class_id = tf.cast(sample["objects"]["label"], dtype=tf.int32)
image, bbox = random_flip_horizontal(image, bbox)
image, image_shape, _ = resize_and_pad_image(image)
bbox = tf.stack(
[
bbox[:, 0] * image_shape[1],
bbox[:, 1] * image_shape[0],
bbox[:, 2] * image_shape[1],
bbox[:, 3] * image_shape[0],
],
axis=-1,
)
bbox = convert_to_xywh(bbox)
return image, bbox, class_id
原始标签(包括边界框和类别ID)需要转换为训练目标。此转换包括以下步骤
class LabelEncoder:
"""Transforms the raw labels into targets for training.
This class has operations to generate targets for a batch of samples which
is made up of the input images, bounding boxes for the objects present and
their class ids.
Attributes:
anchor_box: Anchor box generator to encode the bounding boxes.
box_variance: The scaling factors used to scale the bounding box targets.
"""
def __init__(self):
self._anchor_box = AnchorBox()
self._box_variance = tf.convert_to_tensor(
[0.1, 0.1, 0.2, 0.2], dtype=tf.float32
)
def _match_anchor_boxes(
self, anchor_boxes, gt_boxes, match_iou=0.5, ignore_iou=0.4
):
"""Matches ground truth boxes to anchor boxes based on IOU.
1. Calculates the pairwise IOU for the M `anchor_boxes` and N `gt_boxes`
to get a `(M, N)` shaped matrix.
2. The ground truth box with the maximum IOU in each row is assigned to
the anchor box provided the IOU is greater than `match_iou`.
3. If the maximum IOU in a row is less than `ignore_iou`, the anchor
box is assigned with the background class.
4. The remaining anchor boxes that do not have any class assigned are
ignored during training.
Arguments:
anchor_boxes: A float tensor with the shape `(total_anchors, 4)`
representing all the anchor boxes for a given input image shape,
where each anchor box is of the format `[x, y, width, height]`.
gt_boxes: A float tensor with shape `(num_objects, 4)` representing
the ground truth boxes, where each box is of the format
`[x, y, width, height]`.
match_iou: A float value representing the minimum IOU threshold for
determining if a ground truth box can be assigned to an anchor box.
ignore_iou: A float value representing the IOU threshold under which
an anchor box is assigned to the background class.
Returns:
matched_gt_idx: Index of the matched object
positive_mask: A mask for anchor boxes that have been assigned ground
truth boxes.
ignore_mask: A mask for anchor boxes that need to by ignored during
training
"""
iou_matrix = compute_iou(anchor_boxes, gt_boxes)
max_iou = tf.reduce_max(iou_matrix, axis=1)
matched_gt_idx = tf.argmax(iou_matrix, axis=1)
positive_mask = tf.greater_equal(max_iou, match_iou)
negative_mask = tf.less(max_iou, ignore_iou)
ignore_mask = tf.logical_not(tf.logical_or(positive_mask, negative_mask))
return (
matched_gt_idx,
tf.cast(positive_mask, dtype=tf.float32),
tf.cast(ignore_mask, dtype=tf.float32),
)
def _compute_box_target(self, anchor_boxes, matched_gt_boxes):
"""Transforms the ground truth boxes into targets for training"""
box_target = tf.concat(
[
(matched_gt_boxes[:, :2] - anchor_boxes[:, :2]) / anchor_boxes[:, 2:],
tf.math.log(matched_gt_boxes[:, 2:] / anchor_boxes[:, 2:]),
],
axis=-1,
)
box_target = box_target / self._box_variance
return box_target
def _encode_sample(self, image_shape, gt_boxes, cls_ids):
"""Creates box and classification targets for a single sample"""
anchor_boxes = self._anchor_box.get_anchors(image_shape[1], image_shape[2])
cls_ids = tf.cast(cls_ids, dtype=tf.float32)
matched_gt_idx, positive_mask, ignore_mask = self._match_anchor_boxes(
anchor_boxes, gt_boxes
)
matched_gt_boxes = tf.gather(gt_boxes, matched_gt_idx)
box_target = self._compute_box_target(anchor_boxes, matched_gt_boxes)
matched_gt_cls_ids = tf.gather(cls_ids, matched_gt_idx)
cls_target = tf.where(
tf.not_equal(positive_mask, 1.0), -1.0, matched_gt_cls_ids
)
cls_target = tf.where(tf.equal(ignore_mask, 1.0), -2.0, cls_target)
cls_target = tf.expand_dims(cls_target, axis=-1)
label = tf.concat([box_target, cls_target], axis=-1)
return label
def encode_batch(self, batch_images, gt_boxes, cls_ids):
"""Creates box and classification targets for a batch"""
images_shape = tf.shape(batch_images)
batch_size = images_shape[0]
labels = tf.TensorArray(dtype=tf.float32, size=batch_size, dynamic_size=True)
for i in range(batch_size):
label = self._encode_sample(images_shape, gt_boxes[i], cls_ids[i])
labels = labels.write(i, label)
batch_images = tf.keras.applications.resnet.preprocess_input(batch_images)
return batch_images, labels.stack()
RetinaNet使用基于ResNet的骨干网络,在此基础上构建特征金字塔网络。在本例中,我们使用ResNet50作为骨干网络,并返回步长为8、16和32的特征图。
def get_backbone():
"""Builds ResNet50 with pre-trained imagenet weights"""
backbone = keras.applications.ResNet50(
include_top=False, input_shape=[None, None, 3]
)
c3_output, c4_output, c5_output = [
backbone.get_layer(layer_name).output
for layer_name in ["conv3_block4_out", "conv4_block6_out", "conv5_block3_out"]
]
return keras.Model(
inputs=[backbone.inputs], outputs=[c3_output, c4_output, c5_output]
)
class FeaturePyramid(keras.layers.Layer):
"""Builds the Feature Pyramid with the feature maps from the backbone.
Attributes:
num_classes: Number of classes in the dataset.
backbone: The backbone to build the feature pyramid from.
Currently supports ResNet50 only.
"""
def __init__(self, backbone=None, **kwargs):
super().__init__(name="FeaturePyramid", **kwargs)
self.backbone = backbone if backbone else get_backbone()
self.conv_c3_1x1 = keras.layers.Conv2D(256, 1, 1, "same")
self.conv_c4_1x1 = keras.layers.Conv2D(256, 1, 1, "same")
self.conv_c5_1x1 = keras.layers.Conv2D(256, 1, 1, "same")
self.conv_c3_3x3 = keras.layers.Conv2D(256, 3, 1, "same")
self.conv_c4_3x3 = keras.layers.Conv2D(256, 3, 1, "same")
self.conv_c5_3x3 = keras.layers.Conv2D(256, 3, 1, "same")
self.conv_c6_3x3 = keras.layers.Conv2D(256, 3, 2, "same")
self.conv_c7_3x3 = keras.layers.Conv2D(256, 3, 2, "same")
self.upsample_2x = keras.layers.UpSampling2D(2)
def call(self, images, training=False):
c3_output, c4_output, c5_output = self.backbone(images, training=training)
p3_output = self.conv_c3_1x1(c3_output)
p4_output = self.conv_c4_1x1(c4_output)
p5_output = self.conv_c5_1x1(c5_output)
p4_output = p4_output + self.upsample_2x(p5_output)
p3_output = p3_output + self.upsample_2x(p4_output)
p3_output = self.conv_c3_3x3(p3_output)
p4_output = self.conv_c4_3x3(p4_output)
p5_output = self.conv_c5_3x3(p5_output)
p6_output = self.conv_c6_3x3(c5_output)
p7_output = self.conv_c7_3x3(tf.nn.relu(p6_output))
return p3_output, p4_output, p5_output, p6_output, p7_output
RetinaNet模型具有用于边界框回归和预测物体类别概率的独立头部。这些头部在特征金字塔的所有特征图之间共享。
def build_head(output_filters, bias_init):
"""Builds the class/box predictions head.
Arguments:
output_filters: Number of convolution filters in the final layer.
bias_init: Bias Initializer for the final convolution layer.
Returns:
A keras sequential model representing either the classification
or the box regression head depending on `output_filters`.
"""
head = keras.Sequential([keras.Input(shape=[None, None, 256])])
kernel_init = tf.initializers.RandomNormal(0.0, 0.01)
for _ in range(4):
head.add(
keras.layers.Conv2D(256, 3, padding="same", kernel_initializer=kernel_init)
)
head.add(keras.layers.ReLU())
head.add(
keras.layers.Conv2D(
output_filters,
3,
1,
padding="same",
kernel_initializer=kernel_init,
bias_initializer=bias_init,
)
)
return head
class RetinaNet(keras.Model):
"""A subclassed Keras model implementing the RetinaNet architecture.
Attributes:
num_classes: Number of classes in the dataset.
backbone: The backbone to build the feature pyramid from.
Currently supports ResNet50 only.
"""
def __init__(self, num_classes, backbone=None, **kwargs):
super().__init__(name="RetinaNet", **kwargs)
self.fpn = FeaturePyramid(backbone)
self.num_classes = num_classes
prior_probability = tf.constant_initializer(-np.log((1 - 0.01) / 0.01))
self.cls_head = build_head(9 * num_classes, prior_probability)
self.box_head = build_head(9 * 4, "zeros")
def call(self, image, training=False):
features = self.fpn(image, training=training)
N = tf.shape(image)[0]
cls_outputs = []
box_outputs = []
for feature in features:
box_outputs.append(tf.reshape(self.box_head(feature), [N, -1, 4]))
cls_outputs.append(
tf.reshape(self.cls_head(feature), [N, -1, self.num_classes])
)
cls_outputs = tf.concat(cls_outputs, axis=1)
box_outputs = tf.concat(box_outputs, axis=1)
return tf.concat([box_outputs, cls_outputs], axis=-1)
class DecodePredictions(tf.keras.layers.Layer):
"""A Keras layer that decodes predictions of the RetinaNet model.
Attributes:
num_classes: Number of classes in the dataset
confidence_threshold: Minimum class probability, below which detections
are pruned.
nms_iou_threshold: IOU threshold for the NMS operation
max_detections_per_class: Maximum number of detections to retain per
class.
max_detections: Maximum number of detections to retain across all
classes.
box_variance: The scaling factors used to scale the bounding box
predictions.
"""
def __init__(
self,
num_classes=80,
confidence_threshold=0.05,
nms_iou_threshold=0.5,
max_detections_per_class=100,
max_detections=100,
box_variance=[0.1, 0.1, 0.2, 0.2],
**kwargs
):
super().__init__(**kwargs)
self.num_classes = num_classes
self.confidence_threshold = confidence_threshold
self.nms_iou_threshold = nms_iou_threshold
self.max_detections_per_class = max_detections_per_class
self.max_detections = max_detections
self._anchor_box = AnchorBox()
self._box_variance = tf.convert_to_tensor(
[0.1, 0.1, 0.2, 0.2], dtype=tf.float32
)
def _decode_box_predictions(self, anchor_boxes, box_predictions):
boxes = box_predictions * self._box_variance
boxes = tf.concat(
[
boxes[:, :, :2] * anchor_boxes[:, :, 2:] + anchor_boxes[:, :, :2],
tf.math.exp(boxes[:, :, 2:]) * anchor_boxes[:, :, 2:],
],
axis=-1,
)
boxes_transformed = convert_to_corners(boxes)
return boxes_transformed
def call(self, images, predictions):
image_shape = tf.cast(tf.shape(images), dtype=tf.float32)
anchor_boxes = self._anchor_box.get_anchors(image_shape[1], image_shape[2])
box_predictions = predictions[:, :, :4]
cls_predictions = tf.nn.sigmoid(predictions[:, :, 4:])
boxes = self._decode_box_predictions(anchor_boxes[None, ...], box_predictions)
return tf.image.combined_non_max_suppression(
tf.expand_dims(boxes, axis=2),
cls_predictions,
self.max_detections_per_class,
self.max_detections,
self.nms_iou_threshold,
self.confidence_threshold,
clip_boxes=False,
)
class RetinaNetBoxLoss(tf.losses.Loss):
"""Implements Smooth L1 loss"""
def __init__(self, delta):
super().__init__(
reduction="none", name="RetinaNetBoxLoss"
)
self._delta = delta
def call(self, y_true, y_pred):
difference = y_true - y_pred
absolute_difference = tf.abs(difference)
squared_difference = difference ** 2
loss = tf.where(
tf.less(absolute_difference, self._delta),
0.5 * squared_difference,
absolute_difference - 0.5,
)
return tf.reduce_sum(loss, axis=-1)
class RetinaNetClassificationLoss(tf.losses.Loss):
"""Implements Focal loss"""
def __init__(self, alpha, gamma):
super().__init__(
reduction="none", name="RetinaNetClassificationLoss"
)
self._alpha = alpha
self._gamma = gamma
def call(self, y_true, y_pred):
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(
labels=y_true, logits=y_pred
)
probs = tf.nn.sigmoid(y_pred)
alpha = tf.where(tf.equal(y_true, 1.0), self._alpha, (1.0 - self._alpha))
pt = tf.where(tf.equal(y_true, 1.0), probs, 1 - probs)
loss = alpha * tf.pow(1.0 - pt, self._gamma) * cross_entropy
return tf.reduce_sum(loss, axis=-1)
class RetinaNetLoss(tf.losses.Loss):
"""Wrapper to combine both the losses"""
def __init__(self, num_classes=80, alpha=0.25, gamma=2.0, delta=1.0):
super().__init__(reduction="auto", name="RetinaNetLoss")
self._clf_loss = RetinaNetClassificationLoss(alpha, gamma)
self._box_loss = RetinaNetBoxLoss(delta)
self._num_classes = num_classes
def call(self, y_true, y_pred):
y_pred = tf.cast(y_pred, dtype=tf.float32)
box_labels = y_true[:, :, :4]
box_predictions = y_pred[:, :, :4]
cls_labels = tf.one_hot(
tf.cast(y_true[:, :, 4], dtype=tf.int32),
depth=self._num_classes,
dtype=tf.float32,
)
cls_predictions = y_pred[:, :, 4:]
positive_mask = tf.cast(tf.greater(y_true[:, :, 4], -1.0), dtype=tf.float32)
ignore_mask = tf.cast(tf.equal(y_true[:, :, 4], -2.0), dtype=tf.float32)
clf_loss = self._clf_loss(cls_labels, cls_predictions)
box_loss = self._box_loss(box_labels, box_predictions)
clf_loss = tf.where(tf.equal(ignore_mask, 1.0), 0.0, clf_loss)
box_loss = tf.where(tf.equal(positive_mask, 1.0), box_loss, 0.0)
normalizer = tf.reduce_sum(positive_mask, axis=-1)
clf_loss = tf.math.divide_no_nan(tf.reduce_sum(clf_loss, axis=-1), normalizer)
box_loss = tf.math.divide_no_nan(tf.reduce_sum(box_loss, axis=-1), normalizer)
loss = clf_loss + box_loss
return loss
model_dir = "retinanet/"
label_encoder = LabelEncoder()
num_classes = 80
batch_size = 2
learning_rates = [2.5e-06, 0.000625, 0.00125, 0.0025, 0.00025, 2.5e-05]
learning_rate_boundaries = [125, 250, 500, 240000, 360000]
learning_rate_fn = tf.optimizers.schedules.PiecewiseConstantDecay(
boundaries=learning_rate_boundaries, values=learning_rates
)
resnet50_backbone = get_backbone()
loss_fn = RetinaNetLoss(num_classes)
model = RetinaNet(num_classes, resnet50_backbone)
optimizer = tf.keras.optimizers.legacy.SGD(learning_rate=learning_rate_fn, momentum=0.9)
model.compile(loss=loss_fn, optimizer=optimizer)
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5
94773248/94765736 [==============================] - 0s 0us/step
94781440/94765736 [==============================] - 0s 0us/step
callbacks_list = [
tf.keras.callbacks.ModelCheckpoint(
filepath=os.path.join(model_dir, "weights" + "_epoch_{epoch}"),
monitor="loss",
save_best_only=False,
save_weights_only=True,
verbose=1,
)
]
# set `data_dir=None` to load the complete dataset
(train_dataset, val_dataset), dataset_info = tfds.load(
"coco/2017", split=["train", "validation"], with_info=True, data_dir="data"
)
tf.data
数据管道为了确保模型能够高效地获取数据,我们将使用 tf.data
API 创建输入管道。输入管道包含以下主要处理步骤
padded_batch
为创建矩形张量添加必要的填充LabelEncoder
为批次中的每个样本创建目标autotune = tf.data.AUTOTUNE
train_dataset = train_dataset.map(preprocess_data, num_parallel_calls=autotune)
train_dataset = train_dataset.shuffle(8 * batch_size)
train_dataset = train_dataset.padded_batch(
batch_size=batch_size, padding_values=(0.0, 1e-8, -1), drop_remainder=True
)
train_dataset = train_dataset.map(
label_encoder.encode_batch, num_parallel_calls=autotune
)
train_dataset = train_dataset.apply(tf.data.experimental.ignore_errors())
train_dataset = train_dataset.prefetch(autotune)
val_dataset = val_dataset.map(preprocess_data, num_parallel_calls=autotune)
val_dataset = val_dataset.padded_batch(
batch_size=1, padding_values=(0.0, 1e-8, -1), drop_remainder=True
)
val_dataset = val_dataset.map(label_encoder.encode_batch, num_parallel_calls=autotune)
val_dataset = val_dataset.apply(tf.data.experimental.ignore_errors())
val_dataset = val_dataset.prefetch(autotune)
# Uncomment the following lines, when training on full dataset
# train_steps_per_epoch = dataset_info.splits["train"].num_examples // batch_size
# val_steps_per_epoch = \
# dataset_info.splits["validation"].num_examples // batch_size
# train_steps = 4 * 100000
# epochs = train_steps // train_steps_per_epoch
epochs = 1
# Running 100 training and 50 validation steps,
# remove `.take` when training on the full dataset
model.fit(
train_dataset.take(100),
validation_data=val_dataset.take(50),
epochs=epochs,
callbacks=callbacks_list,
verbose=1,
)
100/Unknown - 290s 3s/step - loss: 4.0817
Epoch 1: saving model to retinanet/weights_epoch_1
100/100 [==============================] - 336s 3s/step - loss: 4.0817 - val_loss: 4.1082
<keras.callbacks.History at 0x7f4c7e0428d0>
# Change this to `model_dir` when not using the downloaded weights
weights_dir = "data"
latest_checkpoint = tf.train.latest_checkpoint(weights_dir)
model.load_weights(latest_checkpoint)
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f4c6823d0d0>
image = tf.keras.Input(shape=[None, None, 3], name="image")
predictions = model(image, training=False)
detections = DecodePredictions(confidence_threshold=0.5)(image, predictions)
inference_model = tf.keras.Model(inputs=image, outputs=detections)
def prepare_image(image):
image, _, ratio = resize_and_pad_image(image, jitter=None)
image = tf.keras.applications.resnet.preprocess_input(image)
return tf.expand_dims(image, axis=0), ratio
val_dataset = tfds.load("coco/2017", split="validation", data_dir="data")
int2str = dataset_info.features["objects"]["label"].int2str
for sample in val_dataset.take(2):
image = tf.cast(sample["image"], dtype=tf.float32)
input_image, ratio = prepare_image(image)
detections = inference_model.predict(input_image)
num_detections = detections.valid_detections[0]
class_names = [
int2str(int(x)) for x in detections.nmsed_classes[0][:num_detections]
]
visualize_detections(
image,
detections.nmsed_boxes[0][:num_detections] / ratio,
class_names,
detections.nmsed_scores[0][:num_detections],
)
HuggingFace 上提供了示例。
训练后的模型 | 演示 |
---|---|