作者: Khalid Salama
创建日期 2021/04/30
最后修改日期 2023/12/30
描述:实现用于图像分类的 Perceiver 模型。
此示例实现了 Andrew Jaegle 等人提出的 Perceiver:使用迭代注意力的通用感知 模型,用于图像分类,并在 CIFAR-100 数据集上进行了演示。
Perceiver 模型利用非对称注意力机制迭代地将输入提炼到一个紧凑的潜在瓶颈中,使其能够扩展以处理非常大的输入。
换句话说:假设您的输入数据数组(例如图像)有 M
个元素(即补丁),其中 M
很大。在标准的 Transformer 模型中,会对 M
个元素执行自注意力操作。此操作的复杂度为 O(M^2)
。但是,Perceiver 模型创建一个大小为 N
个元素的潜在数组,其中 N << M
,并迭代地执行两个操作
O(M.N)
。O(N^2)
。此示例需要 Keras 3.0 或更高版本。
import keras
from keras import layers, activations, ops
num_classes = 100
input_shape = (32, 32, 3)
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data()
print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}")
print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}")
x_train shape: (50000, 32, 32, 3) - y_train shape: (50000, 1)
x_test shape: (10000, 32, 32, 3) - y_test shape: (10000, 1)
learning_rate = 0.001
weight_decay = 0.0001
batch_size = 64
num_epochs = 2 # You should actually use 50 epochs!
dropout_rate = 0.2
image_size = 64 # We'll resize input images to this size.
patch_size = 2 # Size of the patches to be extract from the input images.
num_patches = (image_size // patch_size) ** 2 # Size of the data array.
latent_dim = 256 # Size of the latent array.
projection_dim = 256 # Embedding size of each element in the data and latent arrays.
num_heads = 8 # Number of Transformer heads.
ffn_units = [
projection_dim,
projection_dim,
] # Size of the Transformer Feedforward network.
num_transformer_blocks = 4
num_iterations = 2 # Repetitions of the cross-attention and Transformer modules.
classifier_units = [
projection_dim,
num_classes,
] # Size of the Feedforward network of the final classifier.
print(f"Image size: {image_size} X {image_size} = {image_size ** 2}")
print(f"Patch size: {patch_size} X {patch_size} = {patch_size ** 2} ")
print(f"Patches per image: {num_patches}")
print(f"Elements per patch (3 channels): {(patch_size ** 2) * 3}")
print(f"Latent array shape: {latent_dim} X {projection_dim}")
print(f"Data array shape: {num_patches} X {projection_dim}")
Image size: 64 X 64 = 4096
Patch size: 2 X 2 = 4
Patches per image: 1024
Elements per patch (3 channels): 12
Latent array shape: 256 X 256
Data array shape: 1024 X 256
请注意,为了将每个像素作为数据数组中的单个输入使用,请将 patch_size
设置为 1。
data_augmentation = keras.Sequential(
[
layers.Normalization(),
layers.Resizing(image_size, image_size),
layers.RandomFlip("horizontal"),
layers.RandomZoom(height_factor=0.2, width_factor=0.2),
],
name="data_augmentation",
)
# Compute the mean and the variance of the training data for normalization.
data_augmentation.layers[0].adapt(x_train)
def create_ffn(hidden_units, dropout_rate):
ffn_layers = []
for units in hidden_units[:-1]:
ffn_layers.append(layers.Dense(units, activation=activations.gelu))
ffn_layers.append(layers.Dense(units=hidden_units[-1]))
ffn_layers.append(layers.Dropout(dropout_rate))
ffn = keras.Sequential(ffn_layers)
return ffn
class Patches(layers.Layer):
def __init__(self, patch_size):
super().__init__()
self.patch_size = patch_size
def call(self, images):
batch_size = ops.shape(images)[0]
patches = ops.image.extract_patches(
image=images,
size=(self.patch_size, self.patch_size),
strides=(self.patch_size, self.patch_size),
dilation_rate=1,
padding="valid",
)
patch_dims = patches.shape[-1]
patches = ops.reshape(patches, [batch_size, -1, patch_dims])
return patches
PatchEncoder
层将通过将其投影到大小为 latent_dim
的向量中来线性变换补丁。此外,它还会将可学习的位置嵌入添加到投影向量中。
请注意,原始的 Perceiver 论文使用了傅里叶特征位置编码。
class PatchEncoder(layers.Layer):
def __init__(self, num_patches, projection_dim):
super().__init__()
self.num_patches = num_patches
self.projection = layers.Dense(units=projection_dim)
self.position_embedding = layers.Embedding(
input_dim=num_patches, output_dim=projection_dim
)
def call(self, patches):
positions = ops.arange(start=0, stop=self.num_patches, step=1)
encoded = self.projection(patches) + self.position_embedding(positions)
return encoded
Perceiver 由两个模块组成:一个交叉注意力模块和一个具有自注意力的标准 Transformer。
交叉注意力期望 (latent_dim, projection_dim)
潜在数组和 (data_dim, projection_dim)
数据数组作为输入,以生成 (latent_dim, projection_dim)
潜在数组作为输出。要应用交叉注意力,query
向量是从潜在数组生成的,而 key
和 value
向量是从编码的图像生成的。
请注意,此示例中的数据数组是图像,其中 data_dim
设置为 num_patches
。
def create_cross_attention_module(
latent_dim, data_dim, projection_dim, ffn_units, dropout_rate
):
inputs = {
# Recieve the latent array as an input of shape [1, latent_dim, projection_dim].
"latent_array": layers.Input(
shape=(latent_dim, projection_dim), name="latent_array"
),
# Recieve the data_array (encoded image) as an input of shape [batch_size, data_dim, projection_dim].
"data_array": layers.Input(shape=(data_dim, projection_dim), name="data_array"),
}
# Apply layer norm to the inputs
latent_array = layers.LayerNormalization(epsilon=1e-6)(inputs["latent_array"])
data_array = layers.LayerNormalization(epsilon=1e-6)(inputs["data_array"])
# Create query tensor: [1, latent_dim, projection_dim].
query = layers.Dense(units=projection_dim)(latent_array)
# Create key tensor: [batch_size, data_dim, projection_dim].
key = layers.Dense(units=projection_dim)(data_array)
# Create value tensor: [batch_size, data_dim, projection_dim].
value = layers.Dense(units=projection_dim)(data_array)
# Generate cross-attention outputs: [batch_size, latent_dim, projection_dim].
attention_output = layers.Attention(use_scale=True, dropout=0.1)(
[query, key, value], return_attention_scores=False
)
# Skip connection 1.
attention_output = layers.Add()([attention_output, latent_array])
# Apply layer norm.
attention_output = layers.LayerNormalization(epsilon=1e-6)(attention_output)
# Apply Feedforward network.
ffn = create_ffn(hidden_units=ffn_units, dropout_rate=dropout_rate)
outputs = ffn(attention_output)
# Skip connection 2.
outputs = layers.Add()([outputs, attention_output])
# Create the Keras model.
model = keras.Model(inputs=inputs, outputs=outputs)
return model
Transformer 期望来自交叉注意力模块的输出潜在向量作为输入,对其 latent_dim
元素应用多头自注意力,然后应用前馈网络,以生成另一个 (latent_dim, projection_dim)
潜在数组。
def create_transformer_module(
latent_dim,
projection_dim,
num_heads,
num_transformer_blocks,
ffn_units,
dropout_rate,
):
# input_shape: [1, latent_dim, projection_dim]
inputs = layers.Input(shape=(latent_dim, projection_dim))
x0 = inputs
# Create multiple layers of the Transformer block.
for _ in range(num_transformer_blocks):
# Apply layer normalization 1.
x1 = layers.LayerNormalization(epsilon=1e-6)(x0)
# Create a multi-head self-attention layer.
attention_output = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=projection_dim, dropout=0.1
)(x1, x1)
# Skip connection 1.
x2 = layers.Add()([attention_output, x0])
# Apply layer normalization 2.
x3 = layers.LayerNormalization(epsilon=1e-6)(x2)
# Apply Feedforward network.
ffn = create_ffn(hidden_units=ffn_units, dropout_rate=dropout_rate)
x3 = ffn(x3)
# Skip connection 2.
x0 = layers.Add()([x3, x2])
# Create the Keras model.
model = keras.Model(inputs=inputs, outputs=x0)
return model
Perceiver 模型重复交叉注意力和 Transformer 模块 num_iterations
次——使用共享权重和跳过连接——以允许潜在数组根据需要迭代地从输入图像中提取信息。
class Perceiver(keras.Model):
def __init__(
self,
patch_size,
data_dim,
latent_dim,
projection_dim,
num_heads,
num_transformer_blocks,
ffn_units,
dropout_rate,
num_iterations,
classifier_units,
):
super().__init__()
self.latent_dim = latent_dim
self.data_dim = data_dim
self.patch_size = patch_size
self.projection_dim = projection_dim
self.num_heads = num_heads
self.num_transformer_blocks = num_transformer_blocks
self.ffn_units = ffn_units
self.dropout_rate = dropout_rate
self.num_iterations = num_iterations
self.classifier_units = classifier_units
def build(self, input_shape):
# Create latent array.
self.latent_array = self.add_weight(
shape=(self.latent_dim, self.projection_dim),
initializer="random_normal",
trainable=True,
)
# Create patching module.war
self.patch_encoder = PatchEncoder(self.data_dim, self.projection_dim)
# Create cross-attenion module.
self.cross_attention = create_cross_attention_module(
self.latent_dim,
self.data_dim,
self.projection_dim,
self.ffn_units,
self.dropout_rate,
)
# Create Transformer module.
self.transformer = create_transformer_module(
self.latent_dim,
self.projection_dim,
self.num_heads,
self.num_transformer_blocks,
self.ffn_units,
self.dropout_rate,
)
# Create global average pooling layer.
self.global_average_pooling = layers.GlobalAveragePooling1D()
# Create a classification head.
self.classification_head = create_ffn(
hidden_units=self.classifier_units, dropout_rate=self.dropout_rate
)
super().build(input_shape)
def call(self, inputs):
# Augment data.
augmented = data_augmentation(inputs)
# Create patches.
patches = self.patcher(augmented)
# Encode patches.
encoded_patches = self.patch_encoder(patches)
# Prepare cross-attention inputs.
cross_attention_inputs = {
"latent_array": ops.expand_dims(self.latent_array, 0),
"data_array": encoded_patches,
}
# Apply the cross-attention and the Transformer modules iteratively.
for _ in range(self.num_iterations):
# Apply cross-attention from the latent array to the data array.
latent_array = self.cross_attention(cross_attention_inputs)
# Apply self-attention Transformer to the latent array.
latent_array = self.transformer(latent_array)
# Set the latent array of the next iteration.
cross_attention_inputs["latent_array"] = latent_array
# Apply global average pooling to generate a [batch_size, projection_dim] repesentation tensor.
representation = self.global_average_pooling(latent_array)
# Generate logits.
logits = self.classification_head(representation)
return logits
def run_experiment(model):
# Create ADAM instead of LAMB optimizer with weight decay. (LAMB isn't supported yet)
optimizer = keras.optimizers.Adam(learning_rate=learning_rate)
# Compile the model.
model.compile(
optimizer=optimizer,
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[
keras.metrics.SparseCategoricalAccuracy(name="acc"),
keras.metrics.SparseTopKCategoricalAccuracy(5, name="top5-acc"),
],
)
# Create a learning rate scheduler callback.
reduce_lr = keras.callbacks.ReduceLROnPlateau(
monitor="val_loss", factor=0.2, patience=3
)
# Create an early stopping callback.
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_loss", patience=15, restore_best_weights=True
)
# Fit the model.
history = model.fit(
x=x_train,
y=y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
callbacks=[early_stopping, reduce_lr],
)
_, accuracy, top_5_accuracy = model.evaluate(x_test, y_test)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%")
# Return history to plot learning curves.
return history
请注意,使用当前设置在 V100 GPU 上训练 Perceiver 模型大约需要 200 秒。
perceiver_classifier = Perceiver(
patch_size,
num_patches,
latent_dim,
projection_dim,
num_heads,
num_transformer_blocks,
ffn_units,
dropout_rate,
num_iterations,
classifier_units,
)
history = run_experiment(perceiver_classifier)
Test accuracy: 0.91%
Test top 5 accuracy: 5.2%
经过 40 个 epoch 后,Perceiver 模型在测试数据上实现了大约 53% 的准确率和 81% 的前 5 名准确率。
正如《Perceiver》论文论文中的消融实验所述,可以通过增加潜在数组的大小、增加潜在数组和数据数组元素的(投影)维度、增加Transformer模块中的块数以及增加应用交叉注意力和潜在Transformer模块的迭代次数来获得更好的结果。您也可以尝试增加输入图像的大小并使用不同的补丁大小。
Perceiver受益于模型规模的增加。但是,更大的模型需要更大的加速器才能有效地适应和训练。这就是为什么在Perceiver论文中,他们使用了32个TPU核心来运行实验。