作者: Khalid Salama
创建日期 2021/05/30
最后修改日期 2023/08/03
描述:为 CIFAR-100 图像分类实现 MLP-Mixer、FNet 和 gMLP 模型。
此示例实现了三种现代的无注意力、基于多层感知器 (MLP) 的图像分类模型,并在 CIFAR-100 数据集上进行了演示。
此示例的目的并非比较这些模型,因为它们在不同数据集上以及使用经过良好调整的超参数时,可能会有不同的表现。相反,它旨在展示其主要构建块的简单实现。
import numpy as np
import keras
from keras import layers
num_classes = 100
input_shape = (32, 32, 3)
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data()
print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}")
print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}")
x_train shape: (50000, 32, 32, 3) - y_train shape: (50000, 1)
x_test shape: (10000, 32, 32, 3) - y_test shape: (10000, 1)
weight_decay = 0.0001
batch_size = 128
num_epochs = 1 # Recommended num_epochs = 50
dropout_rate = 0.2
image_size = 64 # We'll resize input images to this size.
patch_size = 8 # Size of the patches to be extracted from the input images.
num_patches = (image_size // patch_size) ** 2 # Size of the data array.
embedding_dim = 256 # Number of hidden units.
num_blocks = 4 # Number of blocks.
print(f"Image size: {image_size} X {image_size} = {image_size ** 2}")
print(f"Patch size: {patch_size} X {patch_size} = {patch_size ** 2} ")
print(f"Patches per image: {num_patches}")
print(f"Elements per patch (3 channels): {(patch_size ** 2) * 3}")
Image size: 64 X 64 = 4096
Patch size: 8 X 8 = 64
Patches per image: 64
Elements per patch (3 channels): 192
我们实现了一种方法,该方法根据处理块构建分类器。
def build_classifier(blocks, positional_encoding=False):
inputs = layers.Input(shape=input_shape)
# Augment data.
augmented = data_augmentation(inputs)
# Create patches.
patches = Patches(patch_size)(augmented)
# Encode patches to generate a [batch_size, num_patches, embedding_dim] tensor.
x = layers.Dense(units=embedding_dim)(patches)
if positional_encoding:
x = x + PositionEmbedding(sequence_length=num_patches)(x)
# Process x using the module blocks.
x = blocks(x)
# Apply global average pooling to generate a [batch_size, embedding_dim] representation tensor.
representation = layers.GlobalAveragePooling1D()(x)
# Apply dropout.
representation = layers.Dropout(rate=dropout_rate)(representation)
# Compute logits outputs.
logits = layers.Dense(num_classes)(representation)
# Create the Keras model.
return keras.Model(inputs=inputs, outputs=logits)
我们实现了一个实用函数来编译、训练和评估给定的模型。
def run_experiment(model):
# Create Adam optimizer with weight decay.
optimizer = keras.optimizers.AdamW(
learning_rate=learning_rate,
weight_decay=weight_decay,
)
# Compile the model.
model.compile(
optimizer=optimizer,
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[
keras.metrics.SparseCategoricalAccuracy(name="acc"),
keras.metrics.SparseTopKCategoricalAccuracy(5, name="top5-acc"),
],
)
# Create a learning rate scheduler callback.
reduce_lr = keras.callbacks.ReduceLROnPlateau(
monitor="val_loss", factor=0.5, patience=5
)
# Create an early stopping callback.
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_loss", patience=10, restore_best_weights=True
)
# Fit the model.
history = model.fit(
x=x_train,
y=y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
callbacks=[early_stopping, reduce_lr],
verbose=0,
)
_, accuracy, top_5_accuracy = model.evaluate(x_test, y_test)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%")
# Return history to plot learning curves.
return history
data_augmentation = keras.Sequential(
[
layers.Normalization(),
layers.Resizing(image_size, image_size),
layers.RandomFlip("horizontal"),
layers.RandomZoom(height_factor=0.2, width_factor=0.2),
],
name="data_augmentation",
)
# Compute the mean and the variance of the training data for normalization.
data_augmentation.layers[0].adapt(x_train)
class Patches(layers.Layer):
def __init__(self, patch_size, **kwargs):
super().__init__(**kwargs)
self.patch_size = patch_size
def call(self, x):
patches = keras.ops.image.extract_patches(x, self.patch_size)
batch_size = keras.ops.shape(patches)[0]
num_patches = keras.ops.shape(patches)[1] * keras.ops.shape(patches)[2]
patch_dim = keras.ops.shape(patches)[3]
out = keras.ops.reshape(patches, (batch_size, num_patches, patch_dim))
return out
class PositionEmbedding(keras.layers.Layer):
def __init__(
self,
sequence_length,
initializer="glorot_uniform",
**kwargs,
):
super().__init__(**kwargs)
if sequence_length is None:
raise ValueError("`sequence_length` must be an Integer, received `None`.")
self.sequence_length = int(sequence_length)
self.initializer = keras.initializers.get(initializer)
def get_config(self):
config = super().get_config()
config.update(
{
"sequence_length": self.sequence_length,
"initializer": keras.initializers.serialize(self.initializer),
}
)
return config
def build(self, input_shape):
feature_size = input_shape[-1]
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.sequence_length, feature_size],
initializer=self.initializer,
trainable=True,
)
super().build(input_shape)
def call(self, inputs, start_index=0):
shape = keras.ops.shape(inputs)
feature_length = shape[-1]
sequence_length = shape[-2]
# trim to match the length of the input sequence, which might be less
# than the sequence_length of the layer.
position_embeddings = keras.ops.convert_to_tensor(self.position_embeddings)
position_embeddings = keras.ops.slice(
position_embeddings,
(start_index, 0),
(sequence_length, feature_length),
)
return keras.ops.broadcast_to(position_embeddings, shape)
def compute_output_shape(self, input_shape):
return input_shape
MLP-Mixer 是一种完全基于多层感知器 (MLP) 的架构,包含两种类型的 MLP 层。
这类似于 基于深度可分离卷积的模型(如 Xception 模型),但使用两个链式密集变换、没有最大池化,并且使用层归一化而不是批归一化。
class MLPMixerLayer(layers.Layer):
def __init__(self, num_patches, hidden_units, dropout_rate, *args, **kwargs):
super().__init__(*args, **kwargs)
self.mlp1 = keras.Sequential(
[
layers.Dense(units=num_patches, activation="gelu"),
layers.Dense(units=num_patches),
layers.Dropout(rate=dropout_rate),
]
)
self.mlp2 = keras.Sequential(
[
layers.Dense(units=num_patches, activation="gelu"),
layers.Dense(units=hidden_units),
layers.Dropout(rate=dropout_rate),
]
)
self.normalize = layers.LayerNormalization(epsilon=1e-6)
def build(self, input_shape):
return super().build(input_shape)
def call(self, inputs):
# Apply layer normalization.
x = self.normalize(inputs)
# Transpose inputs from [num_batches, num_patches, hidden_units] to [num_batches, hidden_units, num_patches].
x_channels = keras.ops.transpose(x, axes=(0, 2, 1))
# Apply mlp1 on each channel independently.
mlp1_outputs = self.mlp1(x_channels)
# Transpose mlp1_outputs from [num_batches, hidden_dim, num_patches] to [num_batches, num_patches, hidden_units].
mlp1_outputs = keras.ops.transpose(mlp1_outputs, axes=(0, 2, 1))
# Add skip connection.
x = mlp1_outputs + inputs
# Apply layer normalization.
x_patches = self.normalize(x)
# Apply mlp2 on each patch independtenly.
mlp2_outputs = self.mlp2(x_patches)
# Add skip connection.
x = x + mlp2_outputs
return x
请注意,使用当前设置在 V100 GPU 上训练模型大约需要每个 epoch 8 秒。
mlpmixer_blocks = keras.Sequential(
[MLPMixerLayer(num_patches, embedding_dim, dropout_rate) for _ in range(num_blocks)]
)
learning_rate = 0.005
mlpmixer_classifier = build_classifier(mlpmixer_blocks)
history = run_experiment(mlpmixer_classifier)
Test accuracy: 9.76%
Test top 5 accuracy: 30.8%
与基于卷积和 Transformer 的模型相比,MLP-Mixer 模型的参数数量往往要少得多,这导致训练和服务计算成本更低。
如 MLP-Mixer 论文中所述,当在大型数据集上进行预训练或使用现代正则化方案时,MLP-Mixer 可以获得与最先进模型相媲美的分数。可以通过增加嵌入维度、增加混合器块的数量以及更长时间地训练模型来获得更好的结果。您还可以尝试增加输入图像的大小并使用不同的补丁大小。
FNet 使用与 Transformer 块类似的块。但是,FNet 将 Transformer 块中的自注意力层替换为一个无参数的 2D 傅里叶变换层。
class FNetLayer(layers.Layer):
def __init__(self, embedding_dim, dropout_rate, *args, **kwargs):
super().__init__(*args, **kwargs)
self.ffn = keras.Sequential(
[
layers.Dense(units=embedding_dim, activation="gelu"),
layers.Dropout(rate=dropout_rate),
layers.Dense(units=embedding_dim),
]
)
self.normalize1 = layers.LayerNormalization(epsilon=1e-6)
self.normalize2 = layers.LayerNormalization(epsilon=1e-6)
def call(self, inputs):
# Apply fourier transformations.
real_part = inputs
im_part = keras.ops.zeros_like(inputs)
x = keras.ops.fft2((real_part, im_part))[0]
# Add skip connection.
x = x + inputs
# Apply layer normalization.
x = self.normalize1(x)
# Apply Feedfowrad network.
x_ffn = self.ffn(x)
# Add skip connection.
x = x + x_ffn
# Apply layer normalization.
return self.normalize2(x)
请注意,使用当前设置在 V100 GPU 上训练模型大约需要每个 epoch 8 秒。
fnet_blocks = keras.Sequential(
[FNetLayer(embedding_dim, dropout_rate) for _ in range(num_blocks)]
)
learning_rate = 0.001
fnet_classifier = build_classifier(fnet_blocks, positional_encoding=True)
history = run_experiment(fnet_classifier)
Test accuracy: 13.82%
Test top 5 accuracy: 36.15%
如 FNet 论文所示,可以通过增加嵌入维度、增加 FNet 块的数量以及更长时间地训练模型来获得更好的结果。您还可以尝试增加输入图像的大小并使用不同的补丁大小。FNet 可以非常有效地扩展到长输入,运行速度比基于注意力的 Transformer 模型快得多,并且可以产生具有竞争力的准确性结果。
gMLP 是一种 MLP 架构,具有空间门控单元 (SGU)。SGU 通过以下方式实现跨空间(通道)维度的跨补丁交互:
class gMLPLayer(layers.Layer):
def __init__(self, num_patches, embedding_dim, dropout_rate, *args, **kwargs):
super().__init__(*args, **kwargs)
self.channel_projection1 = keras.Sequential(
[
layers.Dense(units=embedding_dim * 2, activation="gelu"),
layers.Dropout(rate=dropout_rate),
]
)
self.channel_projection2 = layers.Dense(units=embedding_dim)
self.spatial_projection = layers.Dense(
units=num_patches, bias_initializer="Ones"
)
self.normalize1 = layers.LayerNormalization(epsilon=1e-6)
self.normalize2 = layers.LayerNormalization(epsilon=1e-6)
def spatial_gating_unit(self, x):
# Split x along the channel dimensions.
# Tensors u and v will in the shape of [batch_size, num_patchs, embedding_dim].
u, v = keras.ops.split(x, indices_or_sections=2, axis=2)
# Apply layer normalization.
v = self.normalize2(v)
# Apply spatial projection.
v_channels = keras.ops.transpose(v, axes=(0, 2, 1))
v_projected = self.spatial_projection(v_channels)
v_projected = keras.ops.transpose(v_projected, axes=(0, 2, 1))
# Apply element-wise multiplication.
return u * v_projected
def call(self, inputs):
# Apply layer normalization.
x = self.normalize1(inputs)
# Apply the first channel projection. x_projected shape: [batch_size, num_patches, embedding_dim * 2].
x_projected = self.channel_projection1(x)
# Apply the spatial gating unit. x_spatial shape: [batch_size, num_patches, embedding_dim].
x_spatial = self.spatial_gating_unit(x_projected)
# Apply the second channel projection. x_projected shape: [batch_size, num_patches, embedding_dim].
x_projected = self.channel_projection2(x_spatial)
# Add skip connection.
return x + x_projected
请注意,使用当前设置在 V100 GPU 上训练模型大约需要每个 epoch 9 秒。
gmlp_blocks = keras.Sequential(
[gMLPLayer(num_patches, embedding_dim, dropout_rate) for _ in range(num_blocks)]
)
learning_rate = 0.003
gmlp_classifier = build_classifier(gmlp_blocks)
history = run_experiment(gmlp_classifier)
Test accuracy: 17.05%
Test top 5 accuracy: 42.57%
如 gMLP 论文所示,通过增加嵌入维度、增加 gMLP 模块的数量以及更长时间的训练可以获得更好的结果。您还可以尝试增加输入图像的大小并使用不同的 patch 大小。请注意,该论文使用了先进的正则化策略,例如 MixUp 和 CutMix,以及 AutoAugment。