代码示例 / 计算机视觉 / 图像分类的 MixUp 数据增强

图像分类的 MixUp 数据增强

作者: Sayak Paul
创建日期 2021/03/06
上次修改日期 2023/07/24
描述:使用 mixup 技术进行图像分类的数据增强。

ⓘ 此示例使用 Keras 3

在 Colab 中查看 GitHub 源码


简介

mixup 是 Zhang 等人在 mixup:超越经验风险最小化 中提出的一种领域无关的数据增强技术。其实现遵循以下公式

(请注意,lambda 值是 [0, 1] 范围内的值,并从 Beta 分布 中采样。)

该技术的名字非常直观。我们实际上是在混合特征及其对应的标签。从实现上来说,它很简单。神经网络容易 记住错误的标签。mixup 通过将不同的特征彼此结合(标签也一样)来缓解这个问题,这样网络就不会对特征与其标签之间的关系过于自信。

当我们不确定为给定数据集选择一组增强变换时,例如医学影像数据集,mixup 特别有用。mixup 可以扩展到各种数据模式,例如计算机视觉、自然语言处理、语音等等。


设置

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import numpy as np
import keras
import matplotlib.pyplot as plt

from keras import layers

# TF imports related to tf.data preprocessing
from tensorflow import data as tf_data
from tensorflow import image as tf_image
from tensorflow.random import gamma as tf_random_gamma

准备数据集

在本例中,我们将使用 FashionMNIST 数据集。但是,相同的配方也可以用于其他分类数据集。

(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()

x_train = x_train.astype("float32") / 255.0
x_train = np.reshape(x_train, (-1, 28, 28, 1))
y_train = keras.ops.one_hot(y_train, 10)

x_test = x_test.astype("float32") / 255.0
x_test = np.reshape(x_test, (-1, 28, 28, 1))
y_test = keras.ops.one_hot(y_test, 10)

定义超参数

AUTO = tf_data.AUTOTUNE
BATCH_SIZE = 64
EPOCHS = 10

将数据转换为 TensorFlow Dataset 对象

# Put aside a few samples to create our validation set
val_samples = 2000
x_val, y_val = x_train[:val_samples], y_train[:val_samples]
new_x_train, new_y_train = x_train[val_samples:], y_train[val_samples:]

train_ds_one = (
    tf_data.Dataset.from_tensor_slices((new_x_train, new_y_train))
    .shuffle(BATCH_SIZE * 100)
    .batch(BATCH_SIZE)
)
train_ds_two = (
    tf_data.Dataset.from_tensor_slices((new_x_train, new_y_train))
    .shuffle(BATCH_SIZE * 100)
    .batch(BATCH_SIZE)
)
# Because we will be mixing up the images and their corresponding labels, we will be
# combining two shuffled datasets from the same training data.
train_ds = tf_data.Dataset.zip((train_ds_one, train_ds_two))

val_ds = tf_data.Dataset.from_tensor_slices((x_val, y_val)).batch(BATCH_SIZE)

test_ds = tf_data.Dataset.from_tensor_slices((x_test, y_test)).batch(BATCH_SIZE)

定义 mixup 技术函数

为了执行 mixup 过程,我们使用相同数据集中的训练数据创建新的虚拟数据集,并应用从 Beta 分布 中采样的 [0, 1] 范围内的 lambda 值——例如,new_x = lambda * x1 + (1 - lambda) * x2(其中 x1x2 是图像),并且相同的公式也应用于标签。

def sample_beta_distribution(size, concentration_0=0.2, concentration_1=0.2):
    gamma_1_sample = tf_random_gamma(shape=[size], alpha=concentration_1)
    gamma_2_sample = tf_random_gamma(shape=[size], alpha=concentration_0)
    return gamma_1_sample / (gamma_1_sample + gamma_2_sample)


def mix_up(ds_one, ds_two, alpha=0.2):
    # Unpack two datasets
    images_one, labels_one = ds_one
    images_two, labels_two = ds_two
    batch_size = keras.ops.shape(images_one)[0]

    # Sample lambda and reshape it to do the mixup
    l = sample_beta_distribution(batch_size, alpha, alpha)
    x_l = keras.ops.reshape(l, (batch_size, 1, 1, 1))
    y_l = keras.ops.reshape(l, (batch_size, 1))

    # Perform mixup on both images and labels by combining a pair of images/labels
    # (one from each dataset) into one image/label
    images = images_one * x_l + images_two * (1 - x_l)
    labels = labels_one * y_l + labels_two * (1 - y_l)
    return (images, labels)

注意,这里我们结合两张图像来创建一个新的图像。理论上,我们可以结合任意多个图像,但这会导致计算成本增加。在某些情况下,它也可能无法提高性能。


可视化新的增强数据集

# First create the new dataset using our `mix_up` utility
train_ds_mu = train_ds.map(
    lambda ds_one, ds_two: mix_up(ds_one, ds_two, alpha=0.2),
    num_parallel_calls=AUTO,
)

# Let's preview 9 samples from the dataset
sample_images, sample_labels = next(iter(train_ds_mu))
plt.figure(figsize=(10, 10))
for i, (image, label) in enumerate(zip(sample_images[:9], sample_labels[:9])):
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(image.numpy().squeeze())
    print(label.numpy().tolist())
    plt.axis("off")
[0.0, 0.9964277148246765, 0.0, 0.0, 0.003572270041331649, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.9794676899909973, 0.02053229510784149, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.9536369442939758, 0.0, 0.0, 0.0, 0.04636305570602417, 0.0]
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7631776928901672, 0.0, 0.0, 0.23682232201099396]
[0.0, 0.0, 0.045958757400512695, 0.0, 0.0, 0.0, 0.9540412425994873, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 2.8015051611873787e-08, 0.0, 0.0, 1.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0003173351287841797, 0.0, 0.9996826648712158, 0.0, 0.0, 0.0, 0.0]

png


模型构建

def get_training_model():
    model = keras.Sequential(
        [
            layers.Input(shape=(28, 28, 1)),
            layers.Conv2D(16, (5, 5), activation="relu"),
            layers.MaxPooling2D(pool_size=(2, 2)),
            layers.Conv2D(32, (5, 5), activation="relu"),
            layers.MaxPooling2D(pool_size=(2, 2)),
            layers.Dropout(0.2),
            layers.GlobalAveragePooling2D(),
            layers.Dense(128, activation="relu"),
            layers.Dense(10, activation="softmax"),
        ]
    )
    return model

为了保证可重复性,我们将浅层网络的初始随机权重序列化。

initial_model = get_training_model()
initial_model.save_weights("initial_weights.weights.h5")

1. 使用混合数据集训练模型

model = get_training_model()
model.load_weights("initial_weights.weights.h5")
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(train_ds_mu, validation_data=val_ds, epochs=EPOCHS)
_, test_acc = model.evaluate(test_ds)
print("Test accuracy: {:.2f}%".format(test_acc * 100))
Epoch 1/10
  62/907 ━━━━━━━━━━━━━━━━━━━━  2s 3ms/step - accuracy: 0.2518 - loss: 2.2072

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1699655923.381468   16749 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

 907/907 ━━━━━━━━━━━━━━━━━━━━ 13s 9ms/step - accuracy: 0.5335 - loss: 1.4414 - val_accuracy: 0.7635 - val_loss: 0.6678
Epoch 2/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 12s 4ms/step - accuracy: 0.7168 - loss: 0.9688 - val_accuracy: 0.7925 - val_loss: 0.5849
Epoch 3/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 5s 4ms/step - accuracy: 0.7525 - loss: 0.8940 - val_accuracy: 0.8290 - val_loss: 0.5138
Epoch 4/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.7742 - loss: 0.8431 - val_accuracy: 0.8360 - val_loss: 0.4726
Epoch 5/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 3ms/step - accuracy: 0.7876 - loss: 0.8095 - val_accuracy: 0.8550 - val_loss: 0.4450
Epoch 6/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 3ms/step - accuracy: 0.8029 - loss: 0.7794 - val_accuracy: 0.8560 - val_loss: 0.4178
Epoch 7/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - accuracy: 0.8039 - loss: 0.7632 - val_accuracy: 0.8600 - val_loss: 0.4056
Epoch 8/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 3ms/step - accuracy: 0.8115 - loss: 0.7465 - val_accuracy: 0.8510 - val_loss: 0.4114
Epoch 9/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 3ms/step - accuracy: 0.8115 - loss: 0.7364 - val_accuracy: 0.8645 - val_loss: 0.3983
Epoch 10/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 3ms/step - accuracy: 0.8182 - loss: 0.7237 - val_accuracy: 0.8630 - val_loss: 0.3735
 157/157 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - accuracy: 0.8610 - loss: 0.4030
Test accuracy: 85.82%

2. 使用混合数据集训练模型

model = get_training_model()
model.load_weights("initial_weights.weights.h5")
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
# Notice that we are NOT using the mixed up dataset here
model.fit(train_ds_one, validation_data=val_ds, epochs=EPOCHS)
_, test_acc = model.evaluate(test_ds)
print("Test accuracy: {:.2f}%".format(test_acc * 100))
Epoch 1/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 8s 6ms/step - accuracy: 0.5690 - loss: 1.1928 - val_accuracy: 0.7585 - val_loss: 0.6519
Epoch 2/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 5s 2ms/step - accuracy: 0.7525 - loss: 0.6484 - val_accuracy: 0.7860 - val_loss: 0.5799
Epoch 3/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.7895 - loss: 0.5661 - val_accuracy: 0.8205 - val_loss: 0.5122
Epoch 4/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.8148 - loss: 0.5126 - val_accuracy: 0.8415 - val_loss: 0.4375
Epoch 5/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.8306 - loss: 0.4636 - val_accuracy: 0.8610 - val_loss: 0.3913
Epoch 6/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8433 - loss: 0.4312 - val_accuracy: 0.8680 - val_loss: 0.3734
Epoch 7/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.8544 - loss: 0.4072 - val_accuracy: 0.8750 - val_loss: 0.3606
Epoch 8/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.8577 - loss: 0.3913 - val_accuracy: 0.8735 - val_loss: 0.3520
Epoch 9/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.8645 - loss: 0.3803 - val_accuracy: 0.8725 - val_loss: 0.3536
Epoch 10/10
 907/907 ━━━━━━━━━━━━━━━━━━━━ 3s 3ms/step - accuracy: 0.8686 - loss: 0.3597 - val_accuracy: 0.8745 - val_loss: 0.3395
 157/157 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.8705 - loss: 0.3672
Test accuracy: 86.92%

鼓励读者尝试在来自不同领域的不同数据集上使用 mixup,并试验 lambda 参数。强烈建议您查看 原始论文——作者在 mixup 上展示了一些消融研究,展示了它如何提高泛化能力,以及展示了将多个图像组合成一个图像的结果。


注意

  • 使用 mixup,您可以创建合成示例——尤其是在您缺乏大型数据集时——而不会产生高计算成本。
  • 标签平滑 和 mixup 通常不能很好地协同工作,因为标签平滑已经通过某个因子修改了硬标签。
  • 当您使用 监督对比学习 (SCL) 时,mixup 效果不佳,因为 SCL 在其预训练阶段需要真实的标签。
  • mixup 的其他一些好处包括(如 论文 中所述)对对抗样本的鲁棒性和稳定 GAN(生成对抗网络)训练。
  • 有很多数据增强技术扩展了 mixup,例如 CutMixAugMix