代码示例 / 计算机视觉 / 使用全局上下文 Vision Transformer 进行图像分类

使用全局上下文 Vision Transformer 进行图像分类

作者: Md Awsafur Rahman
创建日期 2023/10/30
最后修改日期 2023/10/30
描述: 全局上下文 Vision Transformer 用于图像分类的实现和微调。

ⓘ 此示例使用 Keras 3

在 Colab 中查看 GitHub 源代码

设置

!pip install --upgrade keras_cv tensorflow
!pip install --upgrade keras
import keras
from keras_cv.layers import DropPath
from keras import ops
from keras import layers

import tensorflow as tf  # only for dataloader
import tensorflow_datasets as tfds  # for flower dataset

from skimage.data import chelsea
import matplotlib.pyplot as plt
import numpy as np

简介

在本笔记本中,我们将利用多后端 Keras 3.0 来实现 GCViT:全局上下文 Vision Transformer 论文,该论文由 A Hatamizadeh 等人在 ICML 2023 上提出。然后,我们将使用官方 ImageNet 预训练权重,在 Flower 数据集上微调该模型以进行图像分类任务。本笔记本的一个亮点是其与多个后端的兼容性:TensorFlow、PyTorch 和 JAX,展示了多后端 Keras 的真正潜力。


动机

注意:在本节中,我们将了解 GCViT 的背景故事,并尝试理解为什么提出它。

  • 近年来,Transformer自然语言处理 (NLP) 任务中占据主导地位,并且其自注意力机制可以捕获长距离和短距离的信息。
  • 遵循这一趋势,Vision Transformer (ViT) 提出在类似于原始 Transformer 编码器的庞大架构中使用图像块作为标记。
  • 尽管卷积神经网络 (CNN) 在计算机视觉领域具有历史统治地位,但基于 ViT 的模型在各种计算机视觉任务中表现出 SOTA 或具有竞争力的性能

  • 然而,自注意力的二次[O(n^2)]计算复杂度缺乏多尺度信息使得 ViT 难以被视为计算机视觉任务(如分割和对象检测,需要在像素级进行密集预测)的通用架构。
  • Swin Transformer 试图通过提出多分辨率/分层架构来解决 ViT 的问题,其中自注意力在局部窗口中计算,并且使用窗口移位等跨窗口连接来建模不同区域之间的交互。但是,局部窗口的有限感受野无法捕获长距离信息,并且诸如窗口移位之类的跨窗口连接方案仅覆盖每个窗口附近的较小邻域。此外,它缺乏归纳偏置,该偏置鼓励某些平移不变性,这对于通用的视觉建模(特别是对于对象检测和语义分割的密集预测任务)仍然是优选的。

  • 为了解决上述局限性,提出了全局上下文 (GC) ViT 网络。

架构

让我们快速概述一下我们的关键组件:1. Stem/PatchEmbed: stem/patchify 层在网络开始时处理图像。对于此网络,它创建补丁/标记并将它们转换为嵌入。2. Level: 它是使用不同块提取特征的重复构建块。3. Global Token Gen./FeatureExtraction: 它使用深度可分离卷积 (Depthwise-CNN)挤压激励 (Squeeze-Excitation)CNNMaxPooling 生成全局标记/补丁。所以基本上它是一个特征提取器。4. Block: 它是一个重复的模块,它将注意力应用于特征并将它们投影到某个维度。 1. Local-MSA: 局部多头自注意力。 2. Global-MSA: 全局多头自注意力。 3. MLP: 将向量投影到另一个维度的线性层。5. Downsample/ReduceSize: 它与全局标记生成模块非常相似,只是它使用 CNN 而不是 MaxPooling 进行下采样,并带有额外的层归一化模块。6. Head: 它是负责分类任务的模块。 1. Pooling: 它将 N x 2D 特征转换为 N x 1D 特征。 2. Classifier: 它处理 N x 1D 特征以做出关于类别的决定。

我已对架构图进行了注释,使其更容易理解,

单元模块

注意: 这些模块用于构建整篇论文中的其他模块。大多数模块要么借用自其他工作,要么是旧工作的修改版本。

  1. SqueezeAndExcitationSqueeze-Excitation (SE),又名瓶颈模块,充当一种通道注意力。它由AvgPoolingDense/全连接 (FC)/线性GELUSigmoid模块组成。

  2. Fused-MBConv: 这类似于EfficientNetV2中使用的模块。它使用深度卷积 (Depthwise-Conv)GELUSqueezeAndExcitation卷积 (Conv) 来提取特征,并带有残差连接。请注意,没有为此声明新模块,我们只是直接应用了相应的模块。

  3. ReduceSize:这是一个基于CNN下采样模块,它使用上面提到的 Fused-MBConv 模块来提取特征,使用步长卷积 (Strided Conv) 来同时减小空间维度并增加特征的通道维度,最后使用 LayerNormalization 模块来规范化特征。在论文/图中,此模块被称为下采样模块。我认为值得一提的是,SwinTransformer 使用 PatchMerging 模块而不是 ReduceSize 来减小空间维度并增加通道维度,它使用全连接/稠密/线性模块。根据 GCViT 论文,使用 ReduceSize 的目的之一是通过 CNN 模块添加归纳偏置。

  4. MLP: 这是我们自己的 多层感知机 模块。这是一个前馈/全连接/线性模块,它简单地将输入投影到一个任意维度。

class SqueezeAndExcitation(layers.Layer):
    """Squeeze and excitation block.

    Args:
        output_dim: output features dimension, if `None` use same dim as input.
        expansion: expansion ratio.
    """

    def __init__(self, output_dim=None, expansion=0.25, **kwargs):
        super().__init__(**kwargs)
        self.expansion = expansion
        self.output_dim = output_dim

    def build(self, input_shape):
        inp = input_shape[-1]
        self.output_dim = self.output_dim or inp
        self.avg_pool = layers.GlobalAvgPool2D(keepdims=True, name="avg_pool")
        self.fc = [
            layers.Dense(int(inp * self.expansion), use_bias=False, name="fc_0"),
            layers.Activation("gelu", name="fc_1"),
            layers.Dense(self.output_dim, use_bias=False, name="fc_2"),
            layers.Activation("sigmoid", name="fc_3"),
        ]
        super().build(input_shape)

    def call(self, inputs, **kwargs):
        x = self.avg_pool(inputs)
        for layer in self.fc:
            x = layer(x)
        return x * inputs


class ReduceSize(layers.Layer):
    """Down-sampling block.

    Args:
        keepdims: if False spatial dim is reduced and channel dim is increased
    """

    def __init__(self, keepdims=False, **kwargs):
        super().__init__(**kwargs)
        self.keepdims = keepdims

    def build(self, input_shape):
        embed_dim = input_shape[-1]
        dim_out = embed_dim if self.keepdims else 2 * embed_dim
        self.pad1 = layers.ZeroPadding2D(1, name="pad1")
        self.pad2 = layers.ZeroPadding2D(1, name="pad2")
        self.conv = [
            layers.DepthwiseConv2D(
                kernel_size=3, strides=1, padding="valid", use_bias=False, name="conv_0"
            ),
            layers.Activation("gelu", name="conv_1"),
            SqueezeAndExcitation(name="conv_2"),
            layers.Conv2D(
                embed_dim,
                kernel_size=1,
                strides=1,
                padding="valid",
                use_bias=False,
                name="conv_3",
            ),
        ]
        self.reduction = layers.Conv2D(
            dim_out,
            kernel_size=3,
            strides=2,
            padding="valid",
            use_bias=False,
            name="reduction",
        )
        self.norm1 = layers.LayerNormalization(
            -1, 1e-05, name="norm1"
        )  # eps like PyTorch
        self.norm2 = layers.LayerNormalization(-1, 1e-05, name="norm2")

    def call(self, inputs, **kwargs):
        x = self.norm1(inputs)
        xr = self.pad1(x)
        for layer in self.conv:
            xr = layer(xr)
        x = x + xr
        x = self.pad2(x)
        x = self.reduction(x)
        x = self.norm2(x)
        return x


class MLP(layers.Layer):
    """Multi-Layer Perceptron (MLP) block.

    Args:
        hidden_features: hidden features dimension.
        out_features: output features dimension.
        activation: activation function.
        dropout: dropout rate.
    """

    def __init__(
        self,
        hidden_features=None,
        out_features=None,
        activation="gelu",
        dropout=0.0,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.hidden_features = hidden_features
        self.out_features = out_features
        self.activation = activation
        self.dropout = dropout

    def build(self, input_shape):
        self.in_features = input_shape[-1]
        self.hidden_features = self.hidden_features or self.in_features
        self.out_features = self.out_features or self.in_features
        self.fc1 = layers.Dense(self.hidden_features, name="fc1")
        self.act = layers.Activation(self.activation, name="act")
        self.fc2 = layers.Dense(self.out_features, name="fc2")
        self.drop1 = layers.Dropout(self.dropout, name="drop1")
        self.drop2 = layers.Dropout(self.dropout, name="drop2")

    def call(self, inputs, **kwargs):
        x = self.fc1(inputs)
        x = self.act(x)
        x = self.drop1(x)
        x = self.fc2(x)
        x = self.drop2(x)
        return x

Stem(茎干)

注意:在代码中,此模块被称为 PatchEmbed,但在论文中,它被称为 Stem

在模型中,我们首先使用了 patch_embed 模块。让我们试着理解这个模块。正如我们从 call 方法中看到的,1. 此模块首先对输入进行填充 (pads)。2. 然后使用卷积来提取带有嵌入的补丁 (patches)。3. 最后,使用 ReduceSize 模块首先使用卷积提取特征,但不减小空间维度也不增加空间维度。4. 一个需要注意的重要点是,与 ViTSwinTransformer 不同,GCViT 创建重叠的补丁。我们可以从代码 Conv2D(self.embed_dim, kernel_size=3, strides=2, name='proj') 中注意到这一点。如果我们想要非重叠的补丁,那么我们将使用相同的 kernel_sizestride。5. 此模块将输入的空间维度减少 4x

总结:图像 → 填充 → 卷积 → (特征提取 + 下采样)

class PatchEmbed(layers.Layer):
    """Patch embedding block.

    Args:
        embed_dim: feature size dimension.
    """

    def __init__(self, embed_dim, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim

    def build(self, input_shape):
        self.pad = layers.ZeroPadding2D(1, name="pad")
        self.proj = layers.Conv2D(self.embed_dim, 3, 2, name="proj")
        self.conv_down = ReduceSize(keepdims=True, name="conv_down")

    def call(self, inputs, **kwargs):
        x = self.pad(inputs)
        x = self.proj(x)
        x = self.conv_down(x)
        return x

全局令牌生成

注意: 这是用于施加归纳偏置的两个 CNN 模块之一。

正如我们从上面的单元格中看到的,在 level 中,我们首先使用了 to_q_global/全局令牌生成/FeatureExtraction。让我们试着理解它是如何工作的。

  • 此模块是一系列 FeatureExtract 模块,根据论文,我们需要重复此模块 K 次,其中 K = log2(H/h)H = feature_map_heightW = feature_map_width
  • FeatureExtraction: 此层与 ReduceSize 模块非常相似,只是它使用 MaxPooling 模块来减小维度,它不增加特征维度(通道),也不使用 LayerNormalizaton。此模块在 Generate Token Gen. 模块中重复使用,以生成用于全局上下文注意力全局令牌
  • 从图中需要注意的一个重要点是,全局令牌在整个图像中共享,这意味着我们仅对图像中的所有局部令牌使用一个全局窗口。这使得计算非常高效。
  • 对于形状为 (B, H, W, C) 的输入特征图,我们将得到形状为 (B, h, w, C) 的输出。如果我们为图像中的总共 M 个局部窗口复制这些全局令牌,其中 M = (H x W)/(h x w) = num_window,则输出形状为:(B * M, h, w, C)。”

总结:此模块用于调整图像大小以适合窗口。

class FeatureExtraction(layers.Layer):
    """Feature extraction block.

    Args:
        keepdims: bool argument for maintaining the resolution.
    """

    def __init__(self, keepdims=False, **kwargs):
        super().__init__(**kwargs)
        self.keepdims = keepdims

    def build(self, input_shape):
        embed_dim = input_shape[-1]
        self.pad1 = layers.ZeroPadding2D(1, name="pad1")
        self.pad2 = layers.ZeroPadding2D(1, name="pad2")
        self.conv = [
            layers.DepthwiseConv2D(3, 1, use_bias=False, name="conv_0"),
            layers.Activation("gelu", name="conv_1"),
            SqueezeAndExcitation(name="conv_2"),
            layers.Conv2D(embed_dim, 1, 1, use_bias=False, name="conv_3"),
        ]
        if not self.keepdims:
            self.pool = layers.MaxPool2D(3, 2, name="pool")
        super().build(input_shape)

    def call(self, inputs, **kwargs):
        x = inputs
        xr = self.pad1(x)
        for layer in self.conv:
            xr = layer(xr)
        x = x + xr
        if not self.keepdims:
            x = self.pool(self.pad2(x))
        return x


class GlobalQueryGenerator(layers.Layer):
    """Global query generator.

    Args:
        keepdims: to keep the dimension of FeatureExtraction layer.
        For instance, repeating log(56/7) = 3 blocks, with input
        window dimension 56 and output window dimension 7 at down-sampling
        ratio 2. Please check Fig.5 of GC ViT paper for details.
    """

    def __init__(self, keepdims=False, **kwargs):
        super().__init__(**kwargs)
        self.keepdims = keepdims

    def build(self, input_shape):
        self.to_q_global = [
            FeatureExtraction(keepdims, name=f"to_q_global_{i}")
            for i, keepdims in enumerate(self.keepdims)
        ]
        super().build(input_shape)

    def call(self, inputs, **kwargs):
        x = inputs
        for layer in self.to_q_global:
            x = layer(x)
        return x

注意力

注意: 这是本文的核心贡献。

正如我们从 call 方法中看到的,1. WindowAttention 模块根据 global_query 参数应用局部全局窗口注意力。

  1. 首先,它将输入特征转换为局部注意力的 query, key, value 和全局注意力的 key, value。对于全局注意力,它从 全局令牌生成 中获取全局查询。从代码中需要注意的一件事是,我们在 Transformer 的所有头之间划分特征或 embed_dim 以减少计算。qkv = tf.reshape(qkv, [B_, N, self.qkv_size, self.num_heads, C // self.num_heads])
  2. 在发送查询、键和值进行注意力计算之前,全局令牌会经历一个重要过程。相同的全局令牌或一个全局窗口被复制到所有局部窗口以提高效率。 q_global = tf.repeat(q_global, repeats=B_//B, axis=0),这里的 B_//B 表示图像中的 num_windows
  3. 然后,根据 global_query 参数简单地应用 局部窗口自注意力全局窗口注意力。从代码中需要注意的一件事是,我们正在将相对位置嵌入注意力掩码而不是补丁嵌入一起添加。attn = attn + relative_position_bias[tf.newaxis,]
  4. 现在,让我们思考一下,试着理解这里发生了什么。让我们关注下图。从左边我们可以看到,在局部注意力中,查询是局部的,并且仅限于局部窗口(红色方框边框),因此我们无法访问远程信息。但在右侧,由于全局查询,我们现在不受限于局部窗口(蓝色方框边框),并且可以访问远程信息。
  5. ViT 中,我们将图像令牌与图像令牌进行比较(注意力),在 SwinTransformer 中,我们将窗口令牌与窗口令牌进行比较,但在 GCViT 中,我们将图像令牌与窗口令牌进行比较。但现在您可能会问,即使图像令牌比窗口令牌具有更大的维度,如何将图像令牌与窗口令牌进行比较(注意力)?(从上图中可以看出,图像令牌的形状为 (1, 8, 8, 3),而窗口令牌的形状为 (1, 4, 4, 3))。是的,您是对的,我们无法直接比较它们,因此我们使用 全局令牌生成/FeatureExtraction CNN 模块调整图像令牌的大小以适合窗口令牌。下表应该给您一个清晰的比较:
模型 查询令牌 键值令牌 注意力类型 注意力覆盖范围
ViT 图像 图像 自注意力 全局
SwinTransformer 窗口 窗口 自注意力 局部
GCViT 调整大小的图像 窗口 图像-窗口注意力 全局
class WindowAttention(layers.Layer):
    """Local window attention.

    This implementation was proposed by
    [Liu et al., 2021](https://arxiv.org/abs/2103.14030) in SwinTransformer.

    Args:
        window_size: window size.
        num_heads: number of attention head.
        global_query: if the input contains global_query
        qkv_bias: bool argument for query, key, value learnable bias.
        qk_scale: bool argument to scaling query, key.
        attention_dropout: attention dropout rate.
        projection_dropout: output dropout rate.
    """

    def __init__(
        self,
        window_size,
        num_heads,
        global_query,
        qkv_bias=True,
        qk_scale=None,
        attention_dropout=0.0,
        projection_dropout=0.0,
        **kwargs,
    ):
        super().__init__(**kwargs)
        window_size = (window_size, window_size)
        self.window_size = window_size
        self.num_heads = num_heads
        self.global_query = global_query
        self.qkv_bias = qkv_bias
        self.qk_scale = qk_scale
        self.attention_dropout = attention_dropout
        self.projection_dropout = projection_dropout

    def build(self, input_shape):
        embed_dim = input_shape[0][-1]
        head_dim = embed_dim // self.num_heads
        self.scale = self.qk_scale or head_dim**-0.5
        self.qkv_size = 3 - int(self.global_query)
        self.qkv = layers.Dense(
            embed_dim * self.qkv_size, use_bias=self.qkv_bias, name="qkv"
        )
        self.relative_position_bias_table = self.add_weight(
            name="relative_position_bias_table",
            shape=[
                (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1),
                self.num_heads,
            ],
            initializer=keras.initializers.TruncatedNormal(stddev=0.02),
            trainable=True,
            dtype=self.dtype,
        )
        self.attn_drop = layers.Dropout(self.attention_dropout, name="attn_drop")
        self.proj = layers.Dense(embed_dim, name="proj")
        self.proj_drop = layers.Dropout(self.projection_dropout, name="proj_drop")
        self.softmax = layers.Activation("softmax", name="softmax")
        super().build(input_shape)

    def get_relative_position_index(self):
        coords_h = ops.arange(self.window_size[0])
        coords_w = ops.arange(self.window_size[1])
        coords = ops.stack(ops.meshgrid(coords_h, coords_w, indexing="ij"), axis=0)
        coords_flatten = ops.reshape(coords, [2, -1])
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
        relative_coords = ops.transpose(relative_coords, axes=[1, 2, 0])
        relative_coords_xx = relative_coords[:, :, 0] + self.window_size[0] - 1
        relative_coords_yy = relative_coords[:, :, 1] + self.window_size[1] - 1
        relative_coords_xx = relative_coords_xx * (2 * self.window_size[1] - 1)
        relative_position_index = relative_coords_xx + relative_coords_yy
        return relative_position_index

    def call(self, inputs, **kwargs):
        if self.global_query:
            inputs, q_global = inputs
            B = ops.shape(q_global)[0]  # B, N, C
        else:
            inputs = inputs[0]
        B_, N, C = ops.shape(inputs)  # B*num_window, num_tokens, channels
        qkv = self.qkv(inputs)
        qkv = ops.reshape(
            qkv, [B_, N, self.qkv_size, self.num_heads, C // self.num_heads]
        )
        qkv = ops.transpose(qkv, [2, 0, 3, 1, 4])
        if self.global_query:
            k, v = ops.split(
                qkv, indices_or_sections=2, axis=0
            )  # for unknown shame num=None will throw error
            q_global = ops.repeat(
                q_global, repeats=B_ // B, axis=0
            )  # num_windows = B_//B => q_global same for all windows in a img
            q = ops.reshape(q_global, [B_, N, self.num_heads, C // self.num_heads])
            q = ops.transpose(q, axes=[0, 2, 1, 3])
        else:
            q, k, v = ops.split(qkv, indices_or_sections=3, axis=0)
            q = ops.squeeze(q, axis=0)

        k = ops.squeeze(k, axis=0)
        v = ops.squeeze(v, axis=0)

        q = q * self.scale
        attn = q @ ops.transpose(k, axes=[0, 1, 3, 2])
        relative_position_bias = ops.take(
            self.relative_position_bias_table,
            ops.reshape(self.get_relative_position_index(), [-1]),
        )
        relative_position_bias = ops.reshape(
            relative_position_bias,
            [
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1,
            ],
        )
        relative_position_bias = ops.transpose(relative_position_bias, axes=[2, 0, 1])
        attn = attn + relative_position_bias[None,]
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)

        x = ops.transpose((attn @ v), axes=[0, 2, 1, 3])
        x = ops.reshape(x, [B_, N, C])
        x = self.proj_drop(self.proj(x))
        return x

注意: 此模块没有任何卷积模块。

在我们使用的 level 中的第二个模块是 block。让我们试着理解它是如何工作的。正如我们从 call 方法中看到的,1. Block 模块要么仅获取用于局部注意力的特征图,要么获取用于全局注意力的附加全局查询。2. 在发送特征图进行注意力计算之前,此模块将批量特征图转换为批量窗口,因为我们将应用窗口注意力。3. 然后我们将批量批量窗口发送进行注意力计算。4. 在应用注意力后,我们将批量窗口还原为批量特征图。5. 在将注意力应用后的特征发送以输出之前,此模块在残差连接中应用随机深度正则化。此外,在应用随机深度之前,它使用可训练参数重新缩放输入。请注意,此随机深度块未在论文的图中显示。

窗口

block 模块中,我们在应用注意力之前和之后创建了窗口。让我们试着理解我们是如何创建窗口的,* 以下模块将特征图 (B, H, W, C) 转换为堆叠的窗口 (B x H/h x W/w, h, w, C)(num_windows_batch, window_size, window_size, channel) * 此模块使用 reshape & transpose 从图像中创建这些窗口,而不是迭代它们。

class Block(layers.Layer):
    """GCViT block.

    Args:
        window_size: window size.
        num_heads: number of attention head.
        global_query: apply global window attention
        mlp_ratio: MLP ratio.
        qkv_bias: bool argument for query, key, value learnable bias.
        qk_scale: bool argument to scaling query, key.
        drop: dropout rate.
        attention_dropout: attention dropout rate.
        path_drop: drop path rate.
        activation: activation function.
        layer_scale: layer scaling coefficient.
    """

    def __init__(
        self,
        window_size,
        num_heads,
        global_query,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        dropout=0.0,
        attention_dropout=0.0,
        path_drop=0.0,
        activation="gelu",
        layer_scale=None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.window_size = window_size
        self.num_heads = num_heads
        self.global_query = global_query
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.qk_scale = qk_scale
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.path_drop = path_drop
        self.activation = activation
        self.layer_scale = layer_scale

    def build(self, input_shape):
        B, H, W, C = input_shape[0]
        self.norm1 = layers.LayerNormalization(-1, 1e-05, name="norm1")
        self.attn = WindowAttention(
            window_size=self.window_size,
            num_heads=self.num_heads,
            global_query=self.global_query,
            qkv_bias=self.qkv_bias,
            qk_scale=self.qk_scale,
            attention_dropout=self.attention_dropout,
            projection_dropout=self.dropout,
            name="attn",
        )
        self.drop_path1 = DropPath(self.path_drop)
        self.drop_path2 = DropPath(self.path_drop)
        self.norm2 = layers.LayerNormalization(-1, 1e-05, name="norm2")
        self.mlp = MLP(
            hidden_features=int(C * self.mlp_ratio),
            dropout=self.dropout,
            activation=self.activation,
            name="mlp",
        )
        if self.layer_scale is not None:
            self.gamma1 = self.add_weight(
                name="gamma1",
                shape=[C],
                initializer=keras.initializers.Constant(self.layer_scale),
                trainable=True,
                dtype=self.dtype,
            )
            self.gamma2 = self.add_weight(
                name="gamma2",
                shape=[C],
                initializer=keras.initializers.Constant(self.layer_scale),
                trainable=True,
                dtype=self.dtype,
            )
        else:
            self.gamma1 = 1.0
            self.gamma2 = 1.0
        self.num_windows = int(H // self.window_size) * int(W // self.window_size)
        super().build(input_shape)

    def call(self, inputs, **kwargs):
        if self.global_query:
            inputs, q_global = inputs
        else:
            inputs = inputs[0]
        B, H, W, C = ops.shape(inputs)
        x = self.norm1(inputs)
        # create windows and concat them in batch axis
        x = self.window_partition(x, self.window_size)  # (B_, win_h, win_w, C)
        # flatten patch
        x = ops.reshape(x, [-1, self.window_size * self.window_size, C])
        # attention
        if self.global_query:
            x = self.attn([x, q_global])
        else:
            x = self.attn([x])
        # reverse window partition
        x = self.window_reverse(x, self.window_size, H, W, C)
        # FFN
        x = inputs + self.drop_path1(x * self.gamma1)
        x = x + self.drop_path2(self.gamma2 * self.mlp(self.norm2(x)))
        return x

    def window_partition(self, x, window_size):
        """
        Args:
            x: (B, H, W, C)
            window_size: window size
        Returns:
            local window features (num_windows*B, window_size, window_size, C)
        """
        B, H, W, C = ops.shape(x)
        x = ops.reshape(
            x,
            [
                -1,
                H // window_size,
                window_size,
                W // window_size,
                window_size,
                C,
            ],
        )
        x = ops.transpose(x, axes=[0, 1, 3, 2, 4, 5])
        windows = ops.reshape(x, [-1, window_size, window_size, C])
        return windows

    def window_reverse(self, windows, window_size, H, W, C):
        """
        Args:
            windows: local window features (num_windows*B, window_size, window_size, C)
            window_size: Window size
            H: Height of image
            W: Width of image
            C: Channel of image
        Returns:
            x: (B, H, W, C)
        """
        x = ops.reshape(
            windows,
            [
                -1,
                H // window_size,
                W // window_size,
                window_size,
                window_size,
                C,
            ],
        )
        x = ops.transpose(x, axes=[0, 1, 3, 2, 4, 5])
        x = ops.reshape(x, [-1, H, W, C])
        return x

层级

注意: 此模块同时具有 Transformer 和 CNN 模块。

在模型中,我们使用的第二个模块是 level。让我们试着理解这个模块。正如我们从 call 方法中看到的,1. 首先,它使用一系列 FeatureExtraction 模块创建 global_token。正如我们稍后将看到的,FeatureExtraction 无非是一个简单的基于 CNN 的模块。2. 然后,它使用一系列 Block 模块来应用局部或全局窗口注意力,具体取决于深度级别。3. 最后,它使用 ReduceSize 来减小上下文特征的维度。

总结:特征图 → 全局令牌 → 局部/全局窗口注意力 → 下采样

class Level(layers.Layer):
    """GCViT level.

    Args:
        depth: number of layers in each stage.
        num_heads: number of heads in each stage.
        window_size: window size in each stage.
        keepdims: dims to keep in FeatureExtraction.
        downsample: bool argument for down-sampling.
        mlp_ratio: MLP ratio.
        qkv_bias: bool argument for query, key, value learnable bias.
        qk_scale: bool argument to scaling query, key.
        drop: dropout rate.
        attention_dropout: attention dropout rate.
        path_drop: drop path rate.
        layer_scale: layer scaling coefficient.
    """

    def __init__(
        self,
        depth,
        num_heads,
        window_size,
        keepdims,
        downsample=True,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        dropout=0.0,
        attention_dropout=0.0,
        path_drop=0.0,
        layer_scale=None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.depth = depth
        self.num_heads = num_heads
        self.window_size = window_size
        self.keepdims = keepdims
        self.downsample = downsample
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.qk_scale = qk_scale
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.path_drop = path_drop
        self.layer_scale = layer_scale

    def build(self, input_shape):
        path_drop = (
            [self.path_drop] * self.depth
            if not isinstance(self.path_drop, list)
            else self.path_drop
        )
        self.blocks = [
            Block(
                window_size=self.window_size,
                num_heads=self.num_heads,
                global_query=bool(i % 2),
                mlp_ratio=self.mlp_ratio,
                qkv_bias=self.qkv_bias,
                qk_scale=self.qk_scale,
                dropout=self.dropout,
                attention_dropout=self.attention_dropout,
                path_drop=path_drop[i],
                layer_scale=self.layer_scale,
                name=f"blocks_{i}",
            )
            for i in range(self.depth)
        ]
        self.down = ReduceSize(keepdims=False, name="downsample")
        self.q_global_gen = GlobalQueryGenerator(self.keepdims, name="q_global_gen")
        super().build(input_shape)

    def call(self, inputs, **kwargs):
        x = inputs
        q_global = self.q_global_gen(x)  # shape: (B, win_size, win_size, C)
        for i, blk in enumerate(self.blocks):
            if i % 2:
                x = blk([x, q_global])  # shape: (B, H, W, C)
            else:
                x = blk([x])  # shape: (B, H, W, C)
        if self.downsample:
            x = self.down(x)  # shape: (B, H//2, W//2, 2*C)
        return x

模型

让我们直接跳到模型。正如我们从 call 方法中看到的,1. 它从图像创建补丁嵌入。此层不会展平这些嵌入,这意味着此模块的输出将是 (batch, height/window_size, width/window_size, embed_dim),而不是 (batch, height x width/window_size^2, embed_dim)。2. 然后,它应用 Dropout 模块,该模块随机将输入单元设置为 0。3. 它将这些嵌入传递给一系列我们称为 levelLevel 模块,其中,1. 生成全局令牌 1. 应用局部和全局注意力 1. 最后应用下采样。4. 因此,经过 n级别后的输出形状:(batch, width/window_size x 2^{n-1}, width/window_size x 2^{n-1}, embed_dim x 2^{n-1})。在最后一层,论文不使用下采样,也不增加通道。5. 使用 LayerNormalization 模块对上述层的输出进行归一化。6. 在头部,使用 Pooling 模块将 2D 特征转换为 1D 特征。此模块后的输出形状为 (batch, embed_dim x 2^{n-1})。7. 最后,将池化的特征发送到 Dense/Linear 模块进行分类。

摘要:图像 → (分块 + 嵌入) → dropout → (注意力 + 特征提取) → 归一化 → 池化 → 分类

class GCViT(keras.Model):
    """GCViT model.

    Args:
        window_size: window size in each stage.
        embed_dim: feature size dimension.
        depths: number of layers in each stage.
        num_heads: number of heads in each stage.
        drop_rate: dropout rate.
        mlp_ratio: MLP ratio.
        qkv_bias: bool argument for query, key, value learnable bias.
        qk_scale: bool argument to scaling query, key.
        attention_dropout: attention dropout rate.
        path_drop: drop path rate.
        layer_scale: layer scaling coefficient.
        num_classes: number of classes.
        head_activation: activation function for head.
    """

    def __init__(
        self,
        window_size,
        embed_dim,
        depths,
        num_heads,
        drop_rate=0.0,
        mlp_ratio=3.0,
        qkv_bias=True,
        qk_scale=None,
        attention_dropout=0.0,
        path_drop=0.1,
        layer_scale=None,
        num_classes=1000,
        head_activation="softmax",
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.window_size = window_size
        self.embed_dim = embed_dim
        self.depths = depths
        self.num_heads = num_heads
        self.drop_rate = drop_rate
        self.mlp_ratio = mlp_ratio
        self.qkv_bias = qkv_bias
        self.qk_scale = qk_scale
        self.attention_dropout = attention_dropout
        self.path_drop = path_drop
        self.layer_scale = layer_scale
        self.num_classes = num_classes
        self.head_activation = head_activation

        self.patch_embed = PatchEmbed(embed_dim=embed_dim, name="patch_embed")
        self.pos_drop = layers.Dropout(drop_rate, name="pos_drop")
        path_drops = np.linspace(0.0, path_drop, sum(depths))
        keepdims = [(0, 0, 0), (0, 0), (1,), (1,)]
        self.levels = []
        for i in range(len(depths)):
            path_drop = path_drops[sum(depths[:i]) : sum(depths[: i + 1])].tolist()
            level = Level(
                depth=depths[i],
                num_heads=num_heads[i],
                window_size=window_size[i],
                keepdims=keepdims[i],
                downsample=(i < len(depths) - 1),
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                dropout=drop_rate,
                attention_dropout=attention_dropout,
                path_drop=path_drop,
                layer_scale=layer_scale,
                name=f"levels_{i}",
            )
            self.levels.append(level)
        self.norm = layers.LayerNormalization(axis=-1, epsilon=1e-05, name="norm")
        self.pool = layers.GlobalAvgPool2D(name="pool")
        self.head = layers.Dense(num_classes, name="head", activation=head_activation)

    def build(self, input_shape):
        super().build(input_shape)
        self.built = True

    def call(self, inputs, **kwargs):
        x = self.patch_embed(inputs)  # shape: (B, H, W, C)
        x = self.pos_drop(x)
        for level in self.levels:
            x = level(x)  # shape: (B, H_, W_, C_)
        x = self.norm(x)
        x = self.pool(x)  # shape: (B, C__)
        x = self.head(x)
        return x

    def build_graph(self, input_shape=(224, 224, 3)):
        """
        ref: https://www.kaggle.com/code/ipythonx/tf-hybrid-efficientnet-swin-transformer-gradcam
        """
        x = keras.Input(shape=input_shape)
        return keras.Model(inputs=[x], outputs=self.call(x), name=self.name)

    def summary(self, input_shape=(224, 224, 3)):
        return self.build_graph(input_shape).summary()

构建模型

  • 让我们构建一个完整的模型,包含以上解释的所有模块。我们将使用论文中提到的配置构建 GCViT-XXTiny 模型。
  • 此外,我们还将加载移植的官方预训练权重,并尝试进行一些预测。
# Model Configs
config = {
    "window_size": (7, 7, 14, 7),
    "embed_dim": 64,
    "depths": (2, 2, 6, 2),
    "num_heads": (2, 4, 8, 16),
    "mlp_ratio": 3.0,
    "path_drop": 0.2,
}
ckpt_link = (
    "https://github.com/awsaf49/gcvit-tf/releases/download/v1.1.6/gcvitxxtiny.keras"
)

# Build Model
model = GCViT(**config)
inp = ops.array(np.random.uniform(size=(1, 224, 224, 3)))
out = model(inp)

# Load Weights
ckpt_path = keras.utils.get_file(ckpt_link.split("/")[-1], ckpt_link)
model.load_weights(ckpt_path)

# Summary
model.summary((224, 224, 3))
Downloading data from https://github.com/awsaf49/gcvit-tf/releases/download/v1.1.6/gcvitxxtiny.keras
 48767519/48767519 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step
Model: "gc_vi_t"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ Layer (type)                        Output Shape                       Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ input_layer (InputLayer)           │ (None, 224, 224, 3)           │           0 │
├────────────────────────────────────┼───────────────────────────────┼─────────────┤
│ patch_embed (PatchEmbed)           │ (None, 56, 56, 64)            │      45,632 │
├────────────────────────────────────┼───────────────────────────────┼─────────────┤
│ pos_drop (Dropout)                 │ (None, 56, 56, 64)            │           0 │
├────────────────────────────────────┼───────────────────────────────┼─────────────┤
│ levels_0 (Level)                   │ (None, 28, 28, 128)           │     180,964 │
├────────────────────────────────────┼───────────────────────────────┼─────────────┤
│ levels_1 (Level)                   │ (None, 14, 14, 256)           │     688,456 │
├────────────────────────────────────┼───────────────────────────────┼─────────────┤
│ levels_2 (Level)                   │ (None, 7, 7, 512)             │   5,170,608 │
├────────────────────────────────────┼───────────────────────────────┼─────────────┤
│ levels_3 (Level)                   │ (None, 7, 7, 512)             │   5,395,744 │
├────────────────────────────────────┼───────────────────────────────┼─────────────┤
│ norm (LayerNormalization)          │ (None, 7, 7, 512)             │       1,024 │
├────────────────────────────────────┼───────────────────────────────┼─────────────┤
│ pool (GlobalAveragePooling2D)      │ (None, 512)                   │           0 │
├────────────────────────────────────┼───────────────────────────────┼─────────────┤
│ head (Dense)                       │ (None, 1000)                  │     513,000 │
└────────────────────────────────────┴───────────────────────────────┴─────────────┘
 Total params: 11,995,428 (45.76 MB)
 Trainable params: 11,995,428 (45.76 MB)
 Non-trainable params: 0 (0.00 B)

预训练权重健全性检查

img = keras.applications.imagenet_utils.preprocess_input(
    chelsea(), mode="torch"
)  # Chelsea the cat
img = ops.image.resize(img, (224, 224))[None,]  # resize & create batch
pred = model(img)
pred_dec = keras.applications.imagenet_utils.decode_predictions(pred)[0]

print("\n# Image:")
plt.figure(figsize=(6, 6))
plt.imshow(chelsea())
plt.show()
print()

print("# Prediction (Top 5):")
for i in range(5):
    print("{:<12} : {:0.2f}".format(pred_dec[i][1], pred_dec[i][2]))
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/imagenet_class_index.json
 35363/35363 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step
# Image:

png

# Prediction (Top 5):
Egyptian_cat : 0.72
tiger_cat    : 0.04
tabby        : 0.03
crossword_puzzle : 0.01
panpipe      : 0.00

微调 GCViT 模型

在以下单元格中,我们将对包含 104 个类别的 Flower 数据集进行 GCViT 模型的微调。

配置

# Model
IMAGE_SIZE = (224, 224)

# Hyper Params
BATCH_SIZE = 32
EPOCHS = 5

# Dataset
CLASSES = [
    "dandelion",
    "daisy",
    "tulips",
    "sunflowers",
    "roses",
]  # don't change the order

# Other constants
MEAN = 255 * np.array([0.485, 0.456, 0.406], dtype="float32")  # imagenet mean
STD = 255 * np.array([0.229, 0.224, 0.225], dtype="float32")  # imagenet std
AUTO = tf.data.AUTOTUNE

数据加载器

def make_dataset(dataset: tf.data.Dataset, train: bool, image_size: int = IMAGE_SIZE):
    def preprocess(image, label):
        # for training, do augmentation
        if train:
            if tf.random.uniform(shape=[]) > 0.5:
                image = tf.image.flip_left_right(image)
        image = tf.image.resize(image, size=image_size, method="bicubic")
        image = (image - MEAN) / STD  # normalization
        return image, label

    if train:
        dataset = dataset.shuffle(BATCH_SIZE * 10)

    return dataset.map(preprocess, AUTO).batch(BATCH_SIZE).prefetch(AUTO)

Flower 数据集

train_dataset, val_dataset = tfds.load(
    "tf_flowers",
    split=["train[:90%]", "train[90%:]"],
    as_supervised=True,
    try_gcs=False,  # gcs_path is necessary for tpu,
)

train_dataset = make_dataset(train_dataset, True)
val_dataset = make_dataset(val_dataset, False)
Downloading and preparing dataset 218.21 MiB (download: 218.21 MiB, generated: 221.83 MiB, total: 440.05 MiB) to /root/tensorflow_datasets/tf_flowers/3.0.1...

Dl Completed...:   0%|          | 0/5 [00:00<?, ? file/s]

Dataset tf_flowers downloaded and prepared to /root/tensorflow_datasets/tf_flowers/3.0.1. Subsequent calls will reuse this data.

为 Flower 数据集重新构建模型

# Re-Build Model
model = GCViT(**config, num_classes=104)
inp = ops.array(np.random.uniform(size=(1, 224, 224, 3)))
out = model(inp)

# Load Weights
ckpt_path = keras.utils.get_file(ckpt_link.split("/")[-1], ckpt_link)
model.load_weights(ckpt_path, skip_mismatch=True)

model.compile(
    loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"]
)
/usr/local/lib/python3.10/dist-packages/keras/src/saving/saving_lib.py:269: UserWarning: A total of 1 objects could not be loaded. Example error message for object <Dense name=head, built=True>:
Layer 'head' expected 2 variables, but received 0 variables during loading. Expected: ['kernel', 'bias']
List of objects that could not be loaded:
[<Dense name=head, built=True>]
  warnings.warn(msg)

训练

history = model.fit(
    train_dataset, validation_data=val_dataset, epochs=EPOCHS, verbose=1
)
Epoch 1/5
 104/104 ━━━━━━━━━━━━━━━━━━━━ 153s 581ms/step - accuracy: 0.5140 - loss: 1.4615 - val_accuracy: 0.8828 - val_loss: 0.3485
Epoch 2/5
 104/104 ━━━━━━━━━━━━━━━━━━━━ 7s 69ms/step - accuracy: 0.8775 - loss: 0.3437 - val_accuracy: 0.8828 - val_loss: 0.3508
Epoch 3/5
 104/104 ━━━━━━━━━━━━━━━━━━━━ 7s 68ms/step - accuracy: 0.8937 - loss: 0.2918 - val_accuracy: 0.9019 - val_loss: 0.2953
Epoch 4/5
 104/104 ━━━━━━━━━━━━━━━━━━━━ 7s 68ms/step - accuracy: 0.9232 - loss: 0.2397 - val_accuracy: 0.9183 - val_loss: 0.2212
Epoch 5/5
 104/104 ━━━━━━━━━━━━━━━━━━━━ 7s 68ms/step - accuracy: 0.9456 - loss: 0.1645 - val_accuracy: 0.9210 - val_loss: 0.2897

参考