代码示例 / 计算机视觉 / 使用前向-前向算法进行图像分类

使用前向-前向算法进行图像分类

作者: Suvaditya Mukherjee
创建日期 2023/01/08
最后修改日期 2024/09/17
描述: 使用前向-前向算法训练一个密集层模型。

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源码


简介

以下示例探讨了如何使用前向-前向算法(Forward-Forward Algorithm)进行训练,而不是 Hinton 在 《前向-前向算法:初步研究》(2022)中提出的传统反向传播方法。

该概念的灵感来源于对 玻尔兹曼机 的理解。反向传播通过成本函数计算实际输出与预测输出之间的差异来调整网络权重。另一方面,FF 算法提出了一种类比:神经元在看到图像及其正确标签的特定组合时会被“激发”。

这种方法受到了皮层中发生的生物学习过程的启发。该方法的一个显著优点是无需再进行网络的反向传播,并且权重更新是局部的,只在层内进行。

由于这仍然是一种实验性的方法,它不能产生最先进的结果。但通过适当的调优,有望接近同等水平。通过这个例子,我们将考察一种允许我们在层内实现前向-前向算法的过程,而不是传统上依赖全局损失函数和优化器的做法。

本教程的结构如下:

  • 执行必要的导入
  • 加载 MNIST 数据集
  • 可视化 MNIST 数据集的随机样本
  • 定义一个 FFDense 层,重写 call 方法并实现一个自定义的 forwardforward 方法来执行权重更新。
  • 定义一个 FFNetwork 层,重写 train_steppredict 方法,并实现 2 个自定义函数用于逐样本预测和叠加标签。
  • 将 MNIST 从 NumPy 数组转换为 tf.data.Dataset
  • 拟合网络
  • 可视化结果
  • 对测试样本进行推理

由于此示例需要自定义 keras.layers.Layerkeras.models.Model 的某些核心函数,请参阅以下资源以了解如何进行自定义:


设置导入

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import tensorflow as tf
import keras
from keras import ops
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
import random
from tensorflow.compiler.tf2xla.python import xla

加载数据集并可视化数据

我们使用 keras.datasets.mnist.load_data() 工具直接以 NumPy 数组的形式获取 MNIST 数据集。然后,我们将其组织成训练集和测试集的格式。

加载数据集后,我们从训练集中选择 4 个随机样本,并使用 matplotlib.pyplot 将它们可视化。

(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

print("4 Random Training samples and labels")
idx1, idx2, idx3, idx4 = random.sample(range(0, x_train.shape[0]), 4)

img1 = (x_train[idx1], y_train[idx1])
img2 = (x_train[idx2], y_train[idx2])
img3 = (x_train[idx3], y_train[idx3])
img4 = (x_train[idx4], y_train[idx4])

imgs = [img1, img2, img3, img4]

plt.figure(figsize=(10, 10))

for idx, item in enumerate(imgs):
    image, label = item[0], item[1]
    plt.subplot(2, 2, idx + 1)
    plt.imshow(image, cmap="gray")
    plt.title(f"Label : {label}")
plt.show()
4 Random Training samples and labels

png


定义 FFDense 自定义层

在此自定义层中,我们有一个基础的 keras.layers.Dense 对象,它充当内部的基础 Dense 层。由于权重更新将在层内部进行,因此我们添加了一个由用户接受的 keras.optimizers.Optimizer 对象。在这里,我们使用 Adam 作为优化器,学习率较高,为 0.03

根据算法的细节,我们必须设置一个 threshold 参数,该参数将用于在每次预测中做出正负决策。默认值为 2.0。由于每个 epoch 都局限于层本身,因此我们还设置了一个 num_epochs 参数(默认为 50)。

我们重写了 call 方法,以便对整个输入空间进行归一化,然后将其通过基础 Dense 层运行,就像在普通的 Dense 层调用中一样。

我们实现了前向-前向算法,它接受两种输入张量,分别代表正样本和负样本。我们在这里编写了一个自定义训练循环,使用 tf.GradientTape()。在这个循环中,我们通过计算预测值与阈值之间的距离来计算每个样本的损失,以了解误差,然后取其平均值得到一个 mean_loss 指标。

借助 tf.GradientTape(),我们计算可训练的基础 Dense 层的梯度更新,并使用该层的局部优化器应用它们。

最后,我们将 call 的结果作为正样本和负样本的 Dense 结果返回,同时还返回最后一个 mean_loss 指标以及在某个全 epoch 运行中的所有损失值。

class FFDense(keras.layers.Layer):
    """
    A custom ForwardForward-enabled Dense layer. It has an implementation of the
    Forward-Forward network internally for use.
    This layer must be used in conjunction with the `FFNetwork` model.
    """

    def __init__(
        self,
        units,
        init_optimizer,
        loss_metric,
        num_epochs=50,
        use_bias=True,
        kernel_initializer="glorot_uniform",
        bias_initializer="zeros",
        kernel_regularizer=None,
        bias_regularizer=None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.dense = keras.layers.Dense(
            units=units,
            use_bias=use_bias,
            kernel_initializer=kernel_initializer,
            bias_initializer=bias_initializer,
            kernel_regularizer=kernel_regularizer,
            bias_regularizer=bias_regularizer,
        )
        self.relu = keras.layers.ReLU()
        self.optimizer = init_optimizer()
        self.loss_metric = loss_metric
        self.threshold = 1.5
        self.num_epochs = num_epochs

    # We perform a normalization step before we run the input through the Dense
    # layer.

    def call(self, x):
        x_norm = ops.norm(x, ord=2, axis=1, keepdims=True)
        x_norm = x_norm + 1e-4
        x_dir = x / x_norm
        res = self.dense(x_dir)
        return self.relu(res)

    # The Forward-Forward algorithm is below. We first perform the Dense-layer
    # operation and then get a Mean Square value for all positive and negative
    # samples respectively.
    # The custom loss function finds the distance between the Mean-squared
    # result and the threshold value we set (a hyperparameter) that will define
    # whether the prediction is positive or negative in nature. Once the loss is
    # calculated, we get a mean across the entire batch combined and perform a
    # gradient calculation and optimization step. This does not technically
    # qualify as backpropagation since there is no gradient being
    # sent to any previous layer and is completely local in nature.

    def forward_forward(self, x_pos, x_neg):
        for i in range(self.num_epochs):
            with tf.GradientTape() as tape:
                g_pos = ops.mean(ops.power(self.call(x_pos), 2), 1)
                g_neg = ops.mean(ops.power(self.call(x_neg), 2), 1)

                loss = ops.log(
                    1
                    + ops.exp(
                        ops.concatenate(
                            [-g_pos + self.threshold, g_neg - self.threshold], 0
                        )
                    )
                )
                mean_loss = ops.cast(ops.mean(loss), dtype="float32")
                self.loss_metric.update_state([mean_loss])
            gradients = tape.gradient(mean_loss, self.dense.trainable_weights)
            self.optimizer.apply_gradients(zip(gradients, self.dense.trainable_weights))
        return (
            ops.stop_gradient(self.call(x_pos)),
            ops.stop_gradient(self.call(x_neg)),
            self.loss_metric.result(),
        )

定义 FFNetwork 自定义模型

定义了自定义层后,我们还需要重写 train_step 方法,并定义一个与我们的 FFDense 层配合使用的自定义 keras.models.Model

对于此算法,我们必须将标签“嵌入”到原始图像中。为此,我们利用了 MNIST 图像的结构,其中左上角的 10 个像素始终为零。我们将这部分作为标签空间,以便在图像本身中以视觉方式进行 one-hot 编码。此操作由 overlay_y_on_x 函数执行。

我们将预测函数分解为一个逐样本预测函数,然后由重写的 predict() 函数在整个测试集上调用。这里的预测是通过测量每个图像的每层神经元的“兴奋度”来完成的。然后将这些兴奋度在所有层上求和,以计算一个网络范围的“好度分数”。具有最高“好度分数”的标签被选为样本预测。

重写了 train_step 函数,使其充当根据每层 epoch 数运行各层训练的主要控制循环。

class FFNetwork(keras.Model):
    """
    A [`keras.Model`](/api/models/model#model-class) that supports a `FFDense` network creation. This model
    can work for any kind of classification task. It has an internal
    implementation with some details specific to the MNIST dataset which can be
    changed as per the use-case.
    """

    # Since each layer runs gradient-calculation and optimization locally, each
    # layer has its own optimizer that we pass. As a standard choice, we pass
    # the `Adam` optimizer with a default learning rate of 0.03 as that was
    # found to be the best rate after experimentation.
    # Loss is tracked using `loss_var` and `loss_count` variables.

    def __init__(
        self,
        dims,
        init_layer_optimizer=lambda: keras.optimizers.Adam(learning_rate=0.03),
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.init_layer_optimizer = init_layer_optimizer
        self.loss_var = keras.Variable(0.0, trainable=False, dtype="float32")
        self.loss_count = keras.Variable(0.0, trainable=False, dtype="float32")
        self.layer_list = [keras.Input(shape=(dims[0],))]
        self.metrics_built = False
        for d in range(len(dims) - 1):
            self.layer_list += [
                FFDense(
                    dims[d + 1],
                    init_optimizer=self.init_layer_optimizer,
                    loss_metric=keras.metrics.Mean(),
                )
            ]

    # This function makes a dynamic change to the image wherein the labels are
    # put on top of the original image (for this example, as MNIST has 10
    # unique labels, we take the top-left corner's first 10 pixels). This
    # function returns the original data tensor with the first 10 pixels being
    # a pixel-based one-hot representation of the labels.

    @tf.function(reduce_retracing=True)
    def overlay_y_on_x(self, data):
        X_sample, y_sample = data
        max_sample = ops.amax(X_sample, axis=0, keepdims=True)
        max_sample = ops.cast(max_sample, dtype="float64")
        X_zeros = ops.zeros([10], dtype="float64")
        X_update = xla.dynamic_update_slice(X_zeros, max_sample, [y_sample])
        X_sample = xla.dynamic_update_slice(X_sample, X_update, [0])
        return X_sample, y_sample

    # A custom `predict_one_sample` performs predictions by passing the images
    # through the network, measures the results produced by each layer (i.e.
    # how high/low the output values are with respect to the set threshold for
    # each label) and then simply finding the label with the highest values.
    # In such a case, the images are tested for their 'goodness' with all
    # labels.

    @tf.function(reduce_retracing=True)
    def predict_one_sample(self, x):
        goodness_per_label = []
        x = ops.reshape(x, [ops.shape(x)[0] * ops.shape(x)[1]])
        for label in range(10):
            h, label = self.overlay_y_on_x(data=(x, label))
            h = ops.reshape(h, [-1, ops.shape(h)[0]])
            goodness = []
            for layer_idx in range(1, len(self.layer_list)):
                layer = self.layer_list[layer_idx]
                h = layer(h)
                goodness += [ops.mean(ops.power(h, 2), 1)]
            goodness_per_label += [ops.expand_dims(ops.sum(goodness, keepdims=True), 1)]
        goodness_per_label = tf.concat(goodness_per_label, 1)
        return ops.cast(ops.argmax(goodness_per_label, 1), dtype="float64")

    def predict(self, data):
        x = data
        preds = list()
        preds = ops.vectorized_map(self.predict_one_sample, x)
        return np.asarray(preds, dtype=int)

    # This custom `train_step` function overrides the internal `train_step`
    # implementation. We take all the input image tensors, flatten them and
    # subsequently produce positive and negative samples on the images.
    # A positive sample is an image that has the right label encoded on it with
    # the `overlay_y_on_x` function. A negative sample is an image that has an
    # erroneous label present on it.
    # With the samples ready, we pass them through each `FFLayer` and perform
    # the Forward-Forward computation on it. The returned loss is the final
    # loss value over all the layers.

    @tf.function(jit_compile=False)
    def train_step(self, data):
        x, y = data

        if not self.metrics_built:
            # build metrics to ensure they can be queried without erroring out.
            # We can't update the metrics' state, as we would usually do, since
            # we do not perform predictions within the train step
            for metric in self.metrics:
                if hasattr(metric, "build"):
                    metric.build(y, y)
            self.metrics_built = True

        # Flatten op
        x = ops.reshape(x, [-1, ops.shape(x)[1] * ops.shape(x)[2]])

        x_pos, y = ops.vectorized_map(self.overlay_y_on_x, (x, y))

        random_y = tf.random.shuffle(y)
        x_neg, y = tf.map_fn(self.overlay_y_on_x, (x, random_y))

        h_pos, h_neg = x_pos, x_neg

        for idx, layer in enumerate(self.layers):
            if isinstance(layer, FFDense):
                print(f"Training layer {idx+1} now : ")
                h_pos, h_neg, loss = layer.forward_forward(h_pos, h_neg)
                self.loss_var.assign_add(loss)
                self.loss_count.assign_add(1.0)
            else:
                print(f"Passing layer {idx+1} now : ")
                x = layer(x)
        mean_res = ops.divide(self.loss_var, self.loss_count)
        return {"FinalLoss": mean_res}

将 MNIST NumPy 数组转换为 tf.data.Dataset

现在,我们对 NumPy 数组进行一些初步处理,然后将其转换为 tf.data.Dataset 格式,以实现优化加载。

x_train = x_train.astype(float) / 255
x_test = x_test.astype(float) / 255
y_train = y_train.astype(int)
y_test = y_test.astype(int)

train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))

train_dataset = train_dataset.batch(60000)
test_dataset = test_dataset.batch(10000)

拟合网络并可视化结果

完成所有先前的设置后,我们将运行 model.fit() 并进行 250 个模型 epoch,这将对每个层运行 50*250 个 epoch。我们可以看到每个层在训练时绘制的损失曲线。

model = FFNetwork(dims=[784, 500, 500])

model.compile(
    optimizer=keras.optimizers.Adam(learning_rate=0.03),
    loss="mse",
    jit_compile=False,
    metrics=[],
)

epochs = 250
history = model.fit(train_dataset, epochs=epochs)
Epoch 1/250

Training layer 1 now : 

Training layer 2 now : 

Training layer 1 now : 

Training layer 2 now : 
1/1 ━━━━━━━━━━━━━━━━━━━━ 90s 90s/step - FinalLoss: 0.7247

Epoch 2/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.7089

Epoch 3/250
 1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.6978

Epoch 4/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.6827

Epoch 5/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.6644

Epoch 6/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.6462

Epoch 7/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.6290

Epoch 8/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.6131

Epoch 9/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5986

Epoch 10/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5853

Epoch 11/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5731

Epoch 12/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5621

Epoch 13/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5519

Epoch 14/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5425

Epoch 15/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5338

Epoch 16/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5259

Epoch 17/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5186

Epoch 18/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5117

Epoch 19/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.5052

Epoch 20/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4992

Epoch 21/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4935

Epoch 22/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4883

Epoch 23/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4833

Epoch 24/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4786

Epoch 25/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4741

Epoch 26/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4698

Epoch 27/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4658

Epoch 28/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4620

Epoch 29/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4584

Epoch 30/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4550

Epoch 31/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4517

Epoch 32/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4486

Epoch 33/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4456

Epoch 34/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4429

Epoch 35/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4401

Epoch 36/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4375

Epoch 37/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4350

Epoch 38/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4325

Epoch 39/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4302

Epoch 40/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4279

Epoch 41/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4258

Epoch 42/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4236

Epoch 43/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4216

Epoch 44/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4197

Epoch 45/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4177

Epoch 46/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4159

Epoch 47/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4141

Epoch 48/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4124

Epoch 49/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4107

Epoch 50/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4090

Epoch 51/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4074

Epoch 52/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4059

Epoch 53/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4044

Epoch 54/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.4030

Epoch 55/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4016

Epoch 56/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.4002

Epoch 57/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3988

Epoch 58/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3975

Epoch 59/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3962

Epoch 60/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3950

Epoch 61/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3938

Epoch 62/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3926

Epoch 63/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3914

Epoch 64/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3903

Epoch 65/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3891

Epoch 66/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3880

Epoch 67/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3869

Epoch 68/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3859

Epoch 69/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3849

Epoch 70/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3839

Epoch 71/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3829

Epoch 72/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3819

Epoch 73/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3810

Epoch 74/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3801

Epoch 75/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3792

Epoch 76/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3783

Epoch 77/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3774

Epoch 78/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3765

Epoch 79/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3757

Epoch 80/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3748

Epoch 81/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3740

Epoch 82/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3732

Epoch 83/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3723

Epoch 84/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3715

Epoch 85/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3708

Epoch 86/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3700

Epoch 87/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3692

Epoch 88/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3685

Epoch 89/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3677

Epoch 90/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3670

Epoch 91/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3663

Epoch 92/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3656

Epoch 93/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3649

Epoch 94/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3642

Epoch 95/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3635

Epoch 96/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3629

Epoch 97/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3622

Epoch 98/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3616

Epoch 99/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3610

Epoch 100/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3603

Epoch 101/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3597

Epoch 102/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3591

Epoch 103/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3585

Epoch 104/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3579

Epoch 105/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3573

Epoch 106/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3567

Epoch 107/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3562

Epoch 108/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3556

Epoch 109/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3550

Epoch 110/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3545

Epoch 111/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3539

Epoch 112/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3534

Epoch 113/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3529

Epoch 114/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3524

Epoch 115/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3519

Epoch 116/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3513

Epoch 117/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3508

Epoch 118/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3503

Epoch 119/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3498

Epoch 120/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3493

Epoch 121/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3488

Epoch 122/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3484

Epoch 123/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3479

Epoch 124/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3474

Epoch 125/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3470

Epoch 126/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3465

Epoch 127/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3461

Epoch 128/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3456

Epoch 129/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3452

Epoch 130/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3447

Epoch 131/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3443

Epoch 132/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3439

Epoch 133/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3435

Epoch 134/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3430

Epoch 135/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3426

Epoch 136/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3422

Epoch 137/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3418

Epoch 138/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3414

Epoch 139/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3411

Epoch 140/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3407

Epoch 141/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3403

Epoch 142/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3399

Epoch 143/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3395

Epoch 144/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3391

Epoch 145/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3387

Epoch 146/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3384

Epoch 147/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3380

Epoch 148/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3376

Epoch 149/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3373

Epoch 150/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3369

Epoch 151/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3366

Epoch 152/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3362

Epoch 153/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3359

Epoch 154/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3355

Epoch 155/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3352

Epoch 156/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3349

Epoch 157/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3346

Epoch 158/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3342

Epoch 159/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3339

Epoch 160/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3336

Epoch 161/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3333

Epoch 162/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3330

Epoch 163/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3327

Epoch 164/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3324

Epoch 165/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3321

Epoch 166/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3318

Epoch 167/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3315

Epoch 168/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3312

Epoch 169/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3309

Epoch 170/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3306

Epoch 171/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3303

Epoch 172/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3301

Epoch 173/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3298

Epoch 174/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3295

Epoch 175/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3292

Epoch 176/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3289

Epoch 177/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3287

Epoch 178/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3284

Epoch 179/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3281

Epoch 180/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3279

Epoch 181/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3276

Epoch 182/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3273

Epoch 183/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3271

Epoch 184/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3268

Epoch 185/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3266

Epoch 186/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3263

Epoch 187/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3261

Epoch 188/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3259

Epoch 189/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3256

Epoch 190/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3254

Epoch 191/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3251

Epoch 192/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3249

Epoch 193/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3247

Epoch 194/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3244

Epoch 195/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3242

Epoch 196/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3240

Epoch 197/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3238

Epoch 198/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3235

Epoch 199/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3233

Epoch 200/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3231

Epoch 201/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3228

Epoch 202/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3226

Epoch 203/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3224

Epoch 204/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3222

Epoch 205/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3220

Epoch 206/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3217

Epoch 207/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3215

Epoch 208/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3213

Epoch 209/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3211

Epoch 210/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3209

Epoch 211/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3207

Epoch 212/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3205

Epoch 213/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3203

Epoch 214/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3201

Epoch 215/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3199

Epoch 216/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3197

Epoch 217/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3195

Epoch 218/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3193

Epoch 219/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3191

Epoch 220/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3190

Epoch 221/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3188

Epoch 222/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3186

Epoch 223/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3184

Epoch 224/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3182

Epoch 225/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3180

Epoch 226/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3179

Epoch 227/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3177

Epoch 228/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3175

Epoch 229/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3173

Epoch 230/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3171

Epoch 231/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3170

Epoch 232/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3168

Epoch 233/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3166

Epoch 234/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3164

Epoch 235/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3163

Epoch 236/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3161

Epoch 237/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3159

Epoch 238/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3158

Epoch 239/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3156

Epoch 240/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 41s 41s/step - FinalLoss: 0.3154

Epoch 241/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3152

Epoch 242/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3151

Epoch 243/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3149

Epoch 244/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3148

Epoch 245/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3146

Epoch 246/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3145

Epoch 247/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3143

Epoch 248/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3141

Epoch 249/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3140

Epoch 250/250
1/1 ━━━━━━━━━━━━━━━━━━━━ 40s 40s/step - FinalLoss: 0.3138

进行推理和测试

在对模型进行了大量训练后,我们现在考察它在测试集上的表现。我们计算准确率分数来仔细分析结果。

preds = model.predict(ops.convert_to_tensor(x_test))

preds = preds.reshape((preds.shape[0], preds.shape[1]))

results = accuracy_score(preds, y_test)

print(f"Test Accuracy score : {results*100}%")

plt.plot(range(len(history.history["FinalLoss"])), history.history["FinalLoss"])
plt.title("Loss over training")
plt.show()
Test Accuracy score : 97.56%

png


结论

本示例通过 TensorFlow 和 Keras 包演示了前向-前向算法的工作原理。尽管 Hinton 教授在其论文中呈现的实验结果目前仅限于 MNIST 和 Fashion-MNIST 等较小的模型和数据集,但预计未来的论文会发布关于 LLMs 等更大模型的后续结果。

在论文中,Hinton 教授报告了一个 2000 个单元、4 个隐藏层、全连接网络的测试准确率误差为 1.36%,运行 60 个 epoch(并提到反向传播仅需 20 个 epoch 即可达到类似性能)。另一项将学习率加倍并训练 40 个 epoch 的运行,得到了稍差的 1.46% 的误差率。

当前示例并未产生最先进的结果。但通过对学习率、模型架构(Dense 层中的单元数、核激活、初始化、正则化等)进行适当的调优,可以改进结果以匹配论文的声明。