代码示例 / 计算机视觉 / 单目深度估计

单目深度估计

作者: Victor Basu
创建日期 2021/08/30
上次修改日期 2024/08/13
描述:使用卷积神经网络实现深度估计模型。

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源码


简介

深度估计是从 2D 图像推断场景几何的关键步骤。单目深度估计的目标是预测每个像素的深度值或推断深度信息,仅给定单个 RGB 图像作为输入。本示例将展示一种使用卷积神经网络和简单的损失函数构建深度估计模型的方法。

depth


设置

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import sys

import tensorflow as tf
import keras
from keras import layers
from keras import ops
import pandas as pd
import numpy as np
import cv2
import matplotlib.pyplot as plt

keras.utils.set_random_seed(123)

下载数据集

在本教程中,我们将使用DIODE:一个密集的室内和室外深度数据集。但是,我们使用验证集生成训练和评估子集以供我们的模型使用。我们使用验证集而不是原始数据集的训练集的原因是,训练集包含 81GB 的数据,与仅 2.6GB 的验证集相比,下载起来比较困难。您可以使用的其他数据集包括NYU-v2KITTI

annotation_folder = "/dataset/"
if not os.path.exists(os.path.abspath(".") + annotation_folder):
    annotation_zip = keras.utils.get_file(
        "val.tar.gz",
        cache_subdir=os.path.abspath("."),
        origin="http://diode-dataset.s3.amazonaws.com/val.tar.gz",
        extract=True,
    )
Downloading data from http://diode-dataset.s3.amazonaws.com/val.tar.gz

2774625282/2774625282 ━━━━━━━━━━━━━━━━━━━━ 205s 0us/step


准备数据集

我们仅使用室内图像来训练我们的深度估计模型。

path = "val/indoors"

filelist = []

for root, dirs, files in os.walk(path):
    for file in files:
        filelist.append(os.path.join(root, file))

filelist.sort()
data = {
    "image": [x for x in filelist if x.endswith(".png")],
    "depth": [x for x in filelist if x.endswith("_depth.npy")],
    "mask": [x for x in filelist if x.endswith("_depth_mask.npy")],
}
df = pd.DataFrame(data)

df = df.sample(frac=1, random_state=42)

准备超参数

HEIGHT = 256
WIDTH = 256
LR = 0.00001
EPOCHS = 30
BATCH_SIZE = 32

构建数据管道

  1. 该管道接收一个包含 RGB 图像路径以及深度和深度掩码文件路径的数据框。
  2. 它读取并调整 RGB 图像的大小。
  3. 它读取深度和深度掩码文件,处理它们以生成深度图图像并调整其大小。
  4. 它为一个批次返回 RGB 图像和深度图图像。
class DataGenerator(keras.utils.PyDataset):
    def __init__(self, data, batch_size=6, dim=(768, 1024), n_channels=3, shuffle=True):
        super().__init__()
        """
        Initialization
        """
        self.data = data
        self.indices = self.data.index.tolist()
        self.dim = dim
        self.n_channels = n_channels
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.min_depth = 0.1
        self.on_epoch_end()

    def __len__(self):
        return int(np.ceil(len(self.data) / self.batch_size))

    def __getitem__(self, index):
        if (index + 1) * self.batch_size > len(self.indices):
            self.batch_size = len(self.indices) - index * self.batch_size
        # Generate one batch of data
        # Generate indices of the batch
        index = self.indices[index * self.batch_size : (index + 1) * self.batch_size]
        # Find list of IDs
        batch = [self.indices[k] for k in index]
        x, y = self.data_generation(batch)

        return x, y

    def on_epoch_end(self):
        """
        Updates indexes after each epoch
        """
        self.index = np.arange(len(self.indices))
        if self.shuffle == True:
            np.random.shuffle(self.index)

    def load(self, image_path, depth_map, mask):
        """Load input and target image."""

        image_ = cv2.imread(image_path)
        image_ = cv2.cvtColor(image_, cv2.COLOR_BGR2RGB)
        image_ = cv2.resize(image_, self.dim)
        image_ = tf.image.convert_image_dtype(image_, tf.float32)

        depth_map = np.load(depth_map).squeeze()

        mask = np.load(mask)
        mask = mask > 0

        max_depth = min(300, np.percentile(depth_map, 99))
        depth_map = np.clip(depth_map, self.min_depth, max_depth)
        depth_map = np.log(depth_map, where=mask)

        depth_map = np.ma.masked_where(~mask, depth_map)

        depth_map = np.clip(depth_map, 0.1, np.log(max_depth))
        depth_map = cv2.resize(depth_map, self.dim)
        depth_map = np.expand_dims(depth_map, axis=2)
        depth_map = tf.image.convert_image_dtype(depth_map, tf.float32)

        return image_, depth_map

    def data_generation(self, batch):
        x = np.empty((self.batch_size, *self.dim, self.n_channels))
        y = np.empty((self.batch_size, *self.dim, 1))

        for i, batch_id in enumerate(batch):
            x[i,], y[i,] = self.load(
                self.data["image"][batch_id],
                self.data["depth"][batch_id],
                self.data["mask"][batch_id],
            )
        x, y = x.astype("float32"), y.astype("float32")
        return x, y

可视化样本

def visualize_depth_map(samples, test=False, model=None):
    input, target = samples
    cmap = plt.cm.jet
    cmap.set_bad(color="black")

    if test:
        pred = model.predict(input)
        fig, ax = plt.subplots(6, 3, figsize=(50, 50))
        for i in range(6):
            ax[i, 0].imshow((input[i].squeeze()))
            ax[i, 1].imshow((target[i].squeeze()), cmap=cmap)
            ax[i, 2].imshow((pred[i].squeeze()), cmap=cmap)

    else:
        fig, ax = plt.subplots(6, 2, figsize=(50, 50))
        for i in range(6):
            ax[i, 0].imshow((input[i].squeeze()))
            ax[i, 1].imshow((target[i].squeeze()), cmap=cmap)


visualize_samples = next(
    iter(DataGenerator(data=df, batch_size=6, dim=(HEIGHT, WIDTH)))
)
visualize_depth_map(visualize_samples)

png


3D 点云可视化

depth_vis = np.flipud(visualize_samples[1][1].squeeze())  # target
img_vis = np.flipud(visualize_samples[0][1].squeeze())  # input

fig = plt.figure(figsize=(15, 10))
ax = plt.axes(projection="3d")

STEP = 3
for x in range(0, img_vis.shape[0], STEP):
    for y in range(0, img_vis.shape[1], STEP):
        ax.scatter(
            [depth_vis[x, y]] * 3,
            [y] * 3,
            [x] * 3,
            c=tuple(img_vis[x, y, :3] / 255),
            s=3,
        )
    ax.view_init(45, 135)

png


构建模型

  1. 基本模型来自 U-Net。
  2. 在降采样块中实现了加性跳跃连接。
class DownscaleBlock(layers.Layer):
    def __init__(
        self, filters, kernel_size=(3, 3), padding="same", strides=1, **kwargs
    ):
        super().__init__(**kwargs)
        self.convA = layers.Conv2D(filters, kernel_size, strides, padding)
        self.convB = layers.Conv2D(filters, kernel_size, strides, padding)
        self.reluA = layers.LeakyReLU(negative_slope=0.2)
        self.reluB = layers.LeakyReLU(negative_slope=0.2)
        self.bn2a = layers.BatchNormalization()
        self.bn2b = layers.BatchNormalization()

        self.pool = layers.MaxPool2D((2, 2), (2, 2))

    def call(self, input_tensor):
        d = self.convA(input_tensor)
        x = self.bn2a(d)
        x = self.reluA(x)

        x = self.convB(x)
        x = self.bn2b(x)
        x = self.reluB(x)

        x += d
        p = self.pool(x)
        return x, p


class UpscaleBlock(layers.Layer):
    def __init__(
        self, filters, kernel_size=(3, 3), padding="same", strides=1, **kwargs
    ):
        super().__init__(**kwargs)
        self.us = layers.UpSampling2D((2, 2))
        self.convA = layers.Conv2D(filters, kernel_size, strides, padding)
        self.convB = layers.Conv2D(filters, kernel_size, strides, padding)
        self.reluA = layers.LeakyReLU(negative_slope=0.2)
        self.reluB = layers.LeakyReLU(negative_slope=0.2)
        self.bn2a = layers.BatchNormalization()
        self.bn2b = layers.BatchNormalization()
        self.conc = layers.Concatenate()

    def call(self, x, skip):
        x = self.us(x)
        concat = self.conc([x, skip])
        x = self.convA(concat)
        x = self.bn2a(x)
        x = self.reluA(x)

        x = self.convB(x)
        x = self.bn2b(x)
        x = self.reluB(x)

        return x


class BottleNeckBlock(layers.Layer):
    def __init__(
        self, filters, kernel_size=(3, 3), padding="same", strides=1, **kwargs
    ):
        super().__init__(**kwargs)
        self.convA = layers.Conv2D(filters, kernel_size, strides, padding)
        self.convB = layers.Conv2D(filters, kernel_size, strides, padding)
        self.reluA = layers.LeakyReLU(negative_slope=0.2)
        self.reluB = layers.LeakyReLU(negative_slope=0.2)

    def call(self, x):
        x = self.convA(x)
        x = self.reluA(x)
        x = self.convB(x)
        x = self.reluB(x)
        return x

定义损失函数

我们将优化模型中的 3 个损失函数。1. 结构相似性指数 (SSIM)。2. L1 损失,或者在我们的例子中称为逐点深度。3. 深度平滑度损失。

在这三个损失函数中,SSIM 对提高模型性能的贡献最大。

def image_gradients(image):
    if len(ops.shape(image)) != 4:
        raise ValueError(
            "image_gradients expects a 4D tensor "
            "[batch_size, h, w, d], not {}.".format(ops.shape(image))
        )

    image_shape = ops.shape(image)
    batch_size, height, width, depth = ops.unstack(image_shape)

    dy = image[:, 1:, :, :] - image[:, :-1, :, :]
    dx = image[:, :, 1:, :] - image[:, :, :-1, :]

    # Return tensors with same size as original image by concatenating
    # zeros. Place the gradient [I(x+1,y) - I(x,y)] on the base pixel (x, y).
    shape = ops.stack([batch_size, 1, width, depth])
    dy = ops.concatenate([dy, ops.zeros(shape, dtype=image.dtype)], axis=1)
    dy = ops.reshape(dy, image_shape)

    shape = ops.stack([batch_size, height, 1, depth])
    dx = ops.concatenate([dx, ops.zeros(shape, dtype=image.dtype)], axis=2)
    dx = ops.reshape(dx, image_shape)

    return dy, dx


class DepthEstimationModel(keras.Model):
    def __init__(self):
        super().__init__()
        self.ssim_loss_weight = 0.85
        self.l1_loss_weight = 0.1
        self.edge_loss_weight = 0.9
        self.loss_metric = keras.metrics.Mean(name="loss")
        f = [16, 32, 64, 128, 256]
        self.downscale_blocks = [
            DownscaleBlock(f[0]),
            DownscaleBlock(f[1]),
            DownscaleBlock(f[2]),
            DownscaleBlock(f[3]),
        ]
        self.bottle_neck_block = BottleNeckBlock(f[4])
        self.upscale_blocks = [
            UpscaleBlock(f[3]),
            UpscaleBlock(f[2]),
            UpscaleBlock(f[1]),
            UpscaleBlock(f[0]),
        ]
        self.conv_layer = layers.Conv2D(1, (1, 1), padding="same", activation="tanh")

    def calculate_loss(self, target, pred):
        # Edges
        dy_true, dx_true = image_gradients(target)
        dy_pred, dx_pred = image_gradients(pred)
        weights_x = ops.cast(ops.exp(ops.mean(ops.abs(dx_true))), "float32")
        weights_y = ops.cast(ops.exp(ops.mean(ops.abs(dy_true))), "float32")

        # Depth smoothness
        smoothness_x = dx_pred * weights_x
        smoothness_y = dy_pred * weights_y

        depth_smoothness_loss = ops.mean(abs(smoothness_x)) + ops.mean(
            abs(smoothness_y)
        )

        # Structural similarity (SSIM) index
        ssim_loss = ops.mean(
            1
            - tf.image.ssim(
                target, pred, max_val=WIDTH, filter_size=7, k1=0.01**2, k2=0.03**2
            )
        )
        # Point-wise depth
        l1_loss = ops.mean(ops.abs(target - pred))

        loss = (
            (self.ssim_loss_weight * ssim_loss)
            + (self.l1_loss_weight * l1_loss)
            + (self.edge_loss_weight * depth_smoothness_loss)
        )

        return loss

    @property
    def metrics(self):
        return [self.loss_metric]

    def train_step(self, batch_data):
        input, target = batch_data
        with tf.GradientTape() as tape:
            pred = self(input, training=True)
            loss = self.calculate_loss(target, pred)

        gradients = tape.gradient(loss, self.trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, self.trainable_variables))
        self.loss_metric.update_state(loss)
        return {
            "loss": self.loss_metric.result(),
        }

    def test_step(self, batch_data):
        input, target = batch_data

        pred = self(input, training=False)
        loss = self.calculate_loss(target, pred)

        self.loss_metric.update_state(loss)
        return {
            "loss": self.loss_metric.result(),
        }

    def call(self, x):
        c1, p1 = self.downscale_blocks[0](x)
        c2, p2 = self.downscale_blocks[1](p1)
        c3, p3 = self.downscale_blocks[2](p2)
        c4, p4 = self.downscale_blocks[3](p3)

        bn = self.bottle_neck_block(p4)

        u1 = self.upscale_blocks[0](bn, c4)
        u2 = self.upscale_blocks[1](u1, c3)
        u3 = self.upscale_blocks[2](u2, c2)
        u4 = self.upscale_blocks[3](u3, c1)

        return self.conv_layer(u4)

模型训练

optimizer = keras.optimizers.SGD(
    learning_rate=LR,
    nesterov=False,
)
model = DepthEstimationModel()
# Compile the model
model.compile(optimizer)

train_loader = DataGenerator(
    data=df[:260].reset_index(drop="true"), batch_size=BATCH_SIZE, dim=(HEIGHT, WIDTH)
)
validation_loader = DataGenerator(
    data=df[260:].reset_index(drop="true"), batch_size=BATCH_SIZE, dim=(HEIGHT, WIDTH)
)
model.fit(
    train_loader,
    epochs=EPOCHS,
    validation_data=validation_loader,
)
Epoch 1/30
 9/9 ━━━━━━━━━━━━━━━━━━━━ 64s 5s/step - loss: 0.7656 - val_loss: 0.7738
Epoch 10/30
 9/9 ━━━━━━━━━━━━━━━━━━━━ 7s 602ms/step - loss: 0.7005 - val_loss: 0.6696
Epoch 20/30
 9/9 ━━━━━━━━━━━━━━━━━━━━ 7s 632ms/step - loss: 0.5827 - val_loss: 0.5821
Epoch 30/30
 9/9 ━━━━━━━━━━━━━━━━━━━━ 7s 593ms/step - loss: 0.6218 - val_loss: 0.5132
<keras.src.callbacks.history.History at 0x7f5a2886d210>

可视化模型输出

我们可视化验证集上的模型输出。第一张图像是 RGB 图像,第二张图像是真实深度图图像,第三张图像是预测的深度图图像。

test_loader = next(
    iter(
        DataGenerator(
            data=df[265:].reset_index(drop="true"), batch_size=6, dim=(HEIGHT, WIDTH)
        )
    )
)
visualize_depth_map(test_loader, test=True, model=model)

test_loader = next(
    iter(
        DataGenerator(
            data=df[300:].reset_index(drop="true"), batch_size=6, dim=(HEIGHT, WIDTH)
        )
    )
)
visualize_depth_map(test_loader, test=True, model=model)

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 781ms/step



1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 782ms/step

1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 171ms/step



1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 172ms/step

png

png


可能的改进

  1. 您可以通过用预训练的 DenseNet 或 ResNet 替换 U-Net 的编码部分来改进此模型。
  2. 损失函数在解决此问题中起着重要作用。调整损失函数可能会产生显着的改进。

参考文献

以下论文更深入地探讨了深度估计的可能方法。1. 无需传感器即可进行深度预测:利用结构进行单目视频无监督学习 2. 深入了解自监督单目深度估计 3. 使用全卷积残差网络进行更深层次的深度预测

您还可以在包含代码的深度估计任务论文中找到有用的实现。

您可以使用托管在 Hugging Face Hub 上的训练模型,并在 Hugging Face Spaces 上尝试演示。