作者: Amogh Joshi
创建日期 2021/06/02
上次修改日期 2023/11/10
描述:如何构建和训练用于下一帧视频预测的卷积LSTM模型。
卷积LSTM架构通过在LSTM层中引入卷积循环单元,将时间序列处理和计算机视觉结合在一起。在本例中,我们将探索卷积LSTM模型在下一帧预测中的应用,下一帧预测是指根据一系列过去帧预测接下来出现的视频帧的过程。
import numpy as np
import matplotlib.pyplot as plt
import keras
from keras import layers
import io
import imageio
from IPython.display import Image, display
from ipywidgets import widgets, Layout, HBox
在本例中,我们将使用移动MNIST数据集。
我们将下载数据集,然后构建和预处理训练集和验证集。
对于下一帧预测,我们的模型将使用前一帧(我们称之为f_n
)来预测新帧(称为f_(n + 1)
)。为了使模型能够创建这些预测,我们需要处理数据,以便我们拥有“移位”的输入和输出,其中输入数据是帧x_n
,用于预测帧y_(n + 1)
。
# Download and load the dataset.
fpath = keras.utils.get_file(
"moving_mnist.npy",
"http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy",
)
dataset = np.load(fpath)
# Swap the axes representing the number of frames and number of data samples.
dataset = np.swapaxes(dataset, 0, 1)
# We'll pick out 1000 of the 10000 total examples and use those.
dataset = dataset[:1000, ...]
# Add a channel dimension since the images are grayscale.
dataset = np.expand_dims(dataset, axis=-1)
# Split into train and validation sets using indexing to optimize memory.
indexes = np.arange(dataset.shape[0])
np.random.shuffle(indexes)
train_index = indexes[: int(0.9 * dataset.shape[0])]
val_index = indexes[int(0.9 * dataset.shape[0]) :]
train_dataset = dataset[train_index]
val_dataset = dataset[val_index]
# Normalize the data to the 0-1 range.
train_dataset = train_dataset / 255
val_dataset = val_dataset / 255
# We'll define a helper function to shift the frames, where
# `x` is frames 0 to n - 1, and `y` is frames 1 to n.
def create_shifted_frames(data):
x = data[:, 0 : data.shape[1] - 1, :, :]
y = data[:, 1 : data.shape[1], :, :]
return x, y
# Apply the processing function to the datasets.
x_train, y_train = create_shifted_frames(train_dataset)
x_val, y_val = create_shifted_frames(val_dataset)
# Inspect the dataset.
print("Training Dataset Shapes: " + str(x_train.shape) + ", " + str(y_train.shape))
print("Validation Dataset Shapes: " + str(x_val.shape) + ", " + str(y_val.shape))
Downloading data from http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy
819200096/819200096 ━━━━━━━━━━━━━━━━━━━━ 116s 0us/step
Training Dataset Shapes: (900, 19, 64, 64, 1), (900, 19, 64, 64, 1)
Validation Dataset Shapes: (100, 19, 64, 64, 1), (100, 19, 64, 64, 1)
我们的数据包含帧序列,每个帧都用于预测即将出现的帧。让我们看一下其中一些连续帧。
# Construct a figure on which we will visualize the images.
fig, axes = plt.subplots(4, 5, figsize=(10, 8))
# Plot each of the sequential images for one random data example.
data_choice = np.random.choice(range(len(train_dataset)), size=1)[0]
for idx, ax in enumerate(axes.flat):
ax.imshow(np.squeeze(train_dataset[data_choice][idx]), cmap="gray")
ax.set_title(f"Frame {idx + 1}")
ax.axis("off")
# Print information and display the figure.
print(f"Displaying frames for example {data_choice}.")
plt.show()
Displaying frames for example 95.
要构建卷积LSTM模型,我们将使用ConvLSTM2D
层,该层将接受形状为(batch_size, num_frames, width, height, channels)
的输入,并返回相同形状的预测影片。
# Construct the input layer with no definite frame size.
inp = layers.Input(shape=(None, *x_train.shape[2:]))
# We will construct 3 `ConvLSTM2D` layers with batch normalization,
# followed by a `Conv3D` layer for the spatiotemporal outputs.
x = layers.ConvLSTM2D(
filters=64,
kernel_size=(5, 5),
padding="same",
return_sequences=True,
activation="relu",
)(inp)
x = layers.BatchNormalization()(x)
x = layers.ConvLSTM2D(
filters=64,
kernel_size=(3, 3),
padding="same",
return_sequences=True,
activation="relu",
)(x)
x = layers.BatchNormalization()(x)
x = layers.ConvLSTM2D(
filters=64,
kernel_size=(1, 1),
padding="same",
return_sequences=True,
activation="relu",
)(x)
x = layers.Conv3D(
filters=1, kernel_size=(3, 3, 3), activation="sigmoid", padding="same"
)(x)
# Next, we will build the complete model and compile it.
model = keras.models.Model(inp, x)
model.compile(
loss=keras.losses.binary_crossentropy,
optimizer=keras.optimizers.Adam(),
)
构建好模型和数据后,我们现在可以训练模型了。
# Define some callbacks to improve training.
early_stopping = keras.callbacks.EarlyStopping(monitor="val_loss", patience=10)
reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor="val_loss", patience=5)
# Define modifiable training hyperparameters.
epochs = 20
batch_size = 5
# Fit the model to the training data.
model.fit(
x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_val, y_val),
callbacks=[early_stopping, reduce_lr],
)
Epoch 1/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 50s 226ms/step - loss: 0.1510 - val_loss: 0.2966 - learning_rate: 0.0010
Epoch 2/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0287 - val_loss: 0.1766 - learning_rate: 0.0010
Epoch 3/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0269 - val_loss: 0.0661 - learning_rate: 0.0010
Epoch 4/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0264 - val_loss: 0.0279 - learning_rate: 0.0010
Epoch 5/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0258 - val_loss: 0.0254 - learning_rate: 0.0010
Epoch 6/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0256 - val_loss: 0.0253 - learning_rate: 0.0010
Epoch 7/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0251 - val_loss: 0.0248 - learning_rate: 0.0010
Epoch 8/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0251 - val_loss: 0.0251 - learning_rate: 0.0010
Epoch 9/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0247 - val_loss: 0.0243 - learning_rate: 0.0010
Epoch 10/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0246 - val_loss: 0.0246 - learning_rate: 0.0010
Epoch 11/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0245 - val_loss: 0.0247 - learning_rate: 0.0010
Epoch 12/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0241 - val_loss: 0.0243 - learning_rate: 0.0010
Epoch 13/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0244 - val_loss: 0.0245 - learning_rate: 0.0010
Epoch 14/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0241 - val_loss: 0.0241 - learning_rate: 0.0010
Epoch 15/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0243 - val_loss: 0.0241 - learning_rate: 0.0010
Epoch 16/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0242 - val_loss: 0.0242 - learning_rate: 0.0010
Epoch 17/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0240 - val_loss: 0.0240 - learning_rate: 0.0010
Epoch 18/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0240 - val_loss: 0.0243 - learning_rate: 0.0010
Epoch 19/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0240 - val_loss: 0.0244 - learning_rate: 0.0010
Epoch 20/20
180/180 ━━━━━━━━━━━━━━━━━━━━ 40s 219ms/step - loss: 0.0237 - val_loss: 0.0238 - learning_rate: 1.0000e-04
<keras.src.callbacks.history.History at 0x7ff294f9c340>
现在模型已经构建并训练完毕,我们可以根据新的视频生成一些示例帧预测。
我们将从验证集中随机选择一个示例,然后从中选择前十帧。然后,我们可以让模型预测10个新帧,我们可以将这些新帧与真实帧预测进行比较。
# Select a random example from the validation dataset.
example = val_dataset[np.random.choice(range(len(val_dataset)), size=1)[0]]
# Pick the first/last ten frames from the example.
frames = example[:10, ...]
original_frames = example[10:, ...]
# Predict a new set of 10 frames.
for _ in range(10):
# Extract the model's prediction and post-process it.
new_prediction = model.predict(np.expand_dims(frames, axis=0))
new_prediction = np.squeeze(new_prediction, axis=0)
predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)
# Extend the set of prediction frames.
frames = np.concatenate((frames, predicted_frame), axis=0)
# Construct a figure for the original and new frames.
fig, axes = plt.subplots(2, 10, figsize=(20, 4))
# Plot the original frames.
for idx, ax in enumerate(axes[0]):
ax.imshow(np.squeeze(original_frames[idx]), cmap="gray")
ax.set_title(f"Frame {idx + 11}")
ax.axis("off")
# Plot the new frames.
new_frames = frames[10:, ...]
for idx, ax in enumerate(axes[1]):
ax.imshow(np.squeeze(new_frames[idx]), cmap="gray")
ax.set_title(f"Frame {idx + 11}")
ax.axis("off")
# Display the figure.
plt.show()
1/1 ━━━━━━━━━━━━━━━━━━━━ 2s 2s/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 800ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 805ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 790ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 821ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 824ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 928ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 813ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 810ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 814ms/step
最后,我们将从验证集中选择几个示例,并使用它们构建一些GIF,以查看模型预测的视频。
您可以使用托管在Hugging Face Hub上的训练模型,并在Hugging Face Spaces上试用演示。
# Select a few random examples from the dataset.
examples = val_dataset[np.random.choice(range(len(val_dataset)), size=5)]
# Iterate over the examples and predict the frames.
predicted_videos = []
for example in examples:
# Pick the first/last ten frames from the example.
frames = example[:10, ...]
original_frames = example[10:, ...]
new_predictions = np.zeros(shape=(10, *frames[0].shape))
# Predict a new set of 10 frames.
for i in range(10):
# Extract the model's prediction and post-process it.
frames = example[: 10 + i + 1, ...]
new_prediction = model.predict(np.expand_dims(frames, axis=0))
new_prediction = np.squeeze(new_prediction, axis=0)
predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0)
# Extend the set of prediction frames.
new_predictions[i] = predicted_frame
# Create and save GIFs for each of the ground truth/prediction images.
for frame_set in [original_frames, new_predictions]:
# Construct a GIF from the selected video frames.
current_frames = np.squeeze(frame_set)
current_frames = current_frames[..., np.newaxis] * np.ones(3)
current_frames = (current_frames * 255).astype(np.uint8)
current_frames = list(current_frames)
# Construct a GIF from the frames.
with io.BytesIO() as gif:
imageio.mimsave(gif, current_frames, "GIF", duration=200)
predicted_videos.append(gif.getvalue())
# Display the videos.
print(" Truth\tPrediction")
for i in range(0, len(predicted_videos), 2):
# Construct and display an `HBox` with the ground truth and prediction.
box = HBox(
[
widgets.Image(value=predicted_videos[i]),
widgets.Image(value=predicted_videos[i + 1]),
]
)
display(box)
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 790ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 8ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/step
Truth Prediction
HBox(children=(Image(value=b'GIF89a@\x00@\x00\x87\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xf8\…
HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfd\xfd\xfd\xfc\xfc\xfc\xfb\xfb\xfb\xf4\…
HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xfb\…
HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xfb\…
HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfd\xfd\xfd\xfc\xfc\xfc\xf9\xf9\xf9\xf7\…