代码示例 / 计算机视觉 / 使用 AdaMatch 进行半监督学习和领域自适应

使用 AdaMatch 进行半监督学习和领域自适应

作者: Sayak Paul
创建日期 2021/06/19
最后修改日期 2021/06/19
描述: 使用 AdaMatch 统一半监督学习和无监督领域自适应。

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源代码


介绍

在此示例中,我们将实现 AdaMatch 算法,该算法由 Berthelot 等人在 AdaMatch:半监督学习和领域自适应的统一方法 中提出。它在无监督领域自适应中取得了新的最先进水平(截至 2021 年 6 月)。AdaMatch 特别有趣,因为它在一个框架下统一了半监督学习 (SSL) 和无监督领域自适应 (UDA)。因此,它提供了一种执行半监督领域自适应 (SSDA) 的方法。

此示例需要 TensorFlow 2.5 或更高版本,以及 TensorFlow Models,可以使用以下命令安装

!pip install -q tf-models-official==2.9.2

在我们继续之前,让我们回顾一下此示例背后的几个基本概念。


预备知识

在 **半监督学习 (SSL)** 中,我们使用少量标记数据来训练模型,以处理更大的未标记数据集。流行的计算机视觉半监督学习方法包括 FixMatchMixMatch噪声学生训练 等。您可以参考 此示例,了解标准 SSL 工作流程的样子。

在 **无监督领域自适应** 中,我们可以访问源标记数据集和目标 *未标记* 数据集。然后,任务是学习一个模型,该模型可以很好地泛化到目标数据集。源数据集和目标数据集在分布方面有所不同。下图说明了这个想法。在本示例中,我们使用 MNIST 数据集 作为源数据集,而目标数据集是 SVHN,它包含房屋号码的图像。这两个数据集在纹理、视角、外观等方面都有各种不同的因素:它们的域或分布彼此不同。

深度学习中流行的领域自适应算法包括 Deep CORAL矩匹配 等。


设置

import tensorflow as tf

tf.random.set_seed(42)

import numpy as np

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import regularizers
from keras_cv.layers import RandAugment

import tensorflow_datasets as tfds

tfds.disable_progress_bar()

准备数据

# MNIST
(
    (mnist_x_train, mnist_y_train),
    (mnist_x_test, mnist_y_test),
) = keras.datasets.mnist.load_data()

# Add a channel dimension
mnist_x_train = tf.expand_dims(mnist_x_train, -1)
mnist_x_test = tf.expand_dims(mnist_x_test, -1)

# Convert the labels to one-hot encoded vectors
mnist_y_train = tf.one_hot(mnist_y_train, 10).numpy()

# SVHN
svhn_train, svhn_test = tfds.load(
    "svhn_cropped", split=["train", "test"], as_supervised=True
)

定义常量和超参数

RESIZE_TO = 32

SOURCE_BATCH_SIZE = 64
TARGET_BATCH_SIZE = 3 * SOURCE_BATCH_SIZE  # Reference: Section 3.2
EPOCHS = 10
STEPS_PER_EPOCH = len(mnist_x_train) // SOURCE_BATCH_SIZE
TOTAL_STEPS = EPOCHS * STEPS_PER_EPOCH

AUTO = tf.data.AUTOTUNE
LEARNING_RATE = 0.03

WEIGHT_DECAY = 0.0005
INIT = "he_normal"
DEPTH = 28
WIDTH_MULT = 2

数据增强实用程序

SSL 算法的一个标准要素是向学习模型提供相同图像的弱增强和强增强版本,以使其预测保持一致。对于强增强,RandAugment 是一个标准选择。对于弱增强,我们将使用水平翻转和随机裁剪。

# Initialize `RandAugment` object with 2 layers of
# augmentation transforms and strength of 5.
augmenter = RandAugment(value_range=(0, 255), augmentations_per_image=2, magnitude=0.5)


def weak_augment(image, source=True):
    if image.dtype != tf.float32:
        image = tf.cast(image, tf.float32)

    # MNIST images are grayscale, this is why we first convert them to
    # RGB images.
    if source:
        image = tf.image.resize_with_pad(image, RESIZE_TO, RESIZE_TO)
        image = tf.tile(image, [1, 1, 3])
    image = tf.image.random_flip_left_right(image)
    image = tf.image.random_crop(image, (RESIZE_TO, RESIZE_TO, 3))
    return image


def strong_augment(image, source=True):
    if image.dtype != tf.float32:
        image = tf.cast(image, tf.float32)

    if source:
        image = tf.image.resize_with_pad(image, RESIZE_TO, RESIZE_TO)
        image = tf.tile(image, [1, 1, 3])
    image = augmenter(image)
    return image

数据加载实用程序

def create_individual_ds(ds, aug_func, source=True):
    if source:
        batch_size = SOURCE_BATCH_SIZE
    else:
        # During training 3x more target unlabeled samples are shown
        # to the model in AdaMatch (Section 3.2 of the paper).
        batch_size = TARGET_BATCH_SIZE
    ds = ds.shuffle(batch_size * 10, seed=42)

    if source:
        ds = ds.map(lambda x, y: (aug_func(x), y), num_parallel_calls=AUTO)
    else:
        ds = ds.map(lambda x, y: (aug_func(x, False), y), num_parallel_calls=AUTO)

    ds = ds.batch(batch_size).prefetch(AUTO)
    return ds

_w_s 后缀分别表示弱和强。

source_ds = tf.data.Dataset.from_tensor_slices((mnist_x_train, mnist_y_train))
source_ds_w = create_individual_ds(source_ds, weak_augment)
source_ds_s = create_individual_ds(source_ds, strong_augment)
final_source_ds = tf.data.Dataset.zip((source_ds_w, source_ds_s))

target_ds_w = create_individual_ds(svhn_train, weak_augment, source=False)
target_ds_s = create_individual_ds(svhn_train, strong_augment, source=False)
final_target_ds = tf.data.Dataset.zip((target_ds_w, target_ds_s))

以下是单个图像批次的样子


损失计算实用程序

def compute_loss_source(source_labels, logits_source_w, logits_source_s):
    loss_func = keras.losses.CategoricalCrossentropy(from_logits=True)
    # First compute the losses between original source labels and
    # predictions made on the weakly and strongly augmented versions
    # of the same images.
    w_loss = loss_func(source_labels, logits_source_w)
    s_loss = loss_func(source_labels, logits_source_s)
    return w_loss + s_loss


def compute_loss_target(target_pseudo_labels_w, logits_target_s, mask):
    loss_func = keras.losses.CategoricalCrossentropy(from_logits=True, reduction="none")
    target_pseudo_labels_w = tf.stop_gradient(target_pseudo_labels_w)
    # For calculating loss for the target samples, we treat the pseudo labels
    # as the ground-truth. These are not considered during backpropagation
    # which is a standard SSL practice.
    target_loss = loss_func(target_pseudo_labels_w, logits_target_s)

    # More on `mask` later.
    mask = tf.cast(mask, target_loss.dtype)
    target_loss *= mask
    return tf.reduce_mean(target_loss, 0)

用于 AdaMatch 训练的子类化模型

下图展示了 AdaMatch 的整体工作流程(取自 原始论文

以下是工作流程的简要分步说明

  1. 我们首先从源数据集和目标数据集中检索弱增强和强增强对。
  2. 我们准备了两个串联副本:i. 其中两个对都串联在一起。ii. 其中只有源数据图像对串联在一起。
  3. 我们在模型上执行两次前向传播:i. 第一次前向传播使用从**2.i**获得的拼接副本。在此前向传播中,批量归一化统计数据被更新。ii. 在第二次前向传播中,我们只使用从**2.ii**获得的拼接副本。批量归一化层以推理模式运行。
  4. 分别计算两次前向传播的 logits。
  5. logits 经过一系列变换,这些变换在论文中介绍(我们将在稍后讨论)。
  6. 我们计算损失并更新基础模型的梯度。
class AdaMatch(keras.Model):
    def __init__(self, model, total_steps, tau=0.9):
        super().__init__()
        self.model = model
        self.tau = tau  # Denotes the confidence threshold
        self.loss_tracker = tf.keras.metrics.Mean(name="loss")
        self.total_steps = total_steps
        self.current_step = tf.Variable(0, dtype="int64")

    @property
    def metrics(self):
        return [self.loss_tracker]

    # This is a warmup schedule to update the weight of the
    # loss contributed by the target unlabeled samples. More
    # on this in the text.
    def compute_mu(self):
        pi = tf.constant(np.pi, dtype="float32")
        step = tf.cast(self.current_step, dtype="float32")
        return 0.5 - tf.cos(tf.math.minimum(pi, (2 * pi * step) / self.total_steps)) / 2

    def train_step(self, data):
        ## Unpack and organize the data ##
        source_ds, target_ds = data
        (source_w, source_labels), (source_s, _) = source_ds
        (
            (target_w, _),
            (target_s, _),
        ) = target_ds  # Notice that we are NOT using any labels here.

        combined_images = tf.concat([source_w, source_s, target_w, target_s], 0)
        combined_source = tf.concat([source_w, source_s], 0)

        total_source = tf.shape(combined_source)[0]
        total_target = tf.shape(tf.concat([target_w, target_s], 0))[0]

        with tf.GradientTape() as tape:
            ## Forward passes ##
            combined_logits = self.model(combined_images, training=True)
            z_d_prime_source = self.model(
                combined_source, training=False
            )  # No BatchNorm update.
            z_prime_source = combined_logits[:total_source]

            ## 1. Random logit interpolation for the source images ##
            lambd = tf.random.uniform((total_source, 10), 0, 1)
            final_source_logits = (lambd * z_prime_source) + (
                (1 - lambd) * z_d_prime_source
            )

            ## 2. Distribution alignment (only consider weakly augmented images) ##
            # Compute softmax for logits of the WEAKLY augmented SOURCE images.
            y_hat_source_w = tf.nn.softmax(final_source_logits[: tf.shape(source_w)[0]])

            # Extract logits for the WEAKLY augmented TARGET images and compute softmax.
            logits_target = combined_logits[total_source:]
            logits_target_w = logits_target[: tf.shape(target_w)[0]]
            y_hat_target_w = tf.nn.softmax(logits_target_w)

            # Align the target label distribution to that of the source.
            expectation_ratio = tf.reduce_mean(y_hat_source_w) / tf.reduce_mean(
                y_hat_target_w
            )
            y_tilde_target_w = tf.math.l2_normalize(
                y_hat_target_w * expectation_ratio, 1
            )

            ## 3. Relative confidence thresholding ##
            row_wise_max = tf.reduce_max(y_hat_source_w, axis=-1)
            final_sum = tf.reduce_mean(row_wise_max, 0)
            c_tau = self.tau * final_sum
            mask = tf.reduce_max(y_tilde_target_w, axis=-1) >= c_tau

            ## Compute losses (pay attention to the indexing) ##
            source_loss = compute_loss_source(
                source_labels,
                final_source_logits[: tf.shape(source_w)[0]],
                final_source_logits[tf.shape(source_w)[0] :],
            )
            target_loss = compute_loss_target(
                y_tilde_target_w, logits_target[tf.shape(target_w)[0] :], mask
            )

            t = self.compute_mu()  # Compute weight for the target loss
            total_loss = source_loss + (t * target_loss)
            self.current_step.assign_add(
                1
            )  # Update current training step for the scheduler

        gradients = tape.gradient(total_loss, self.model.trainable_variables)
        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))

        self.loss_tracker.update_state(total_loss)
        return {"loss": self.loss_tracker.result()}

作者在论文中介绍了三个改进。

  • 在 AdaMatch 中,我们执行两次前向传播,只有一次负责更新批量归一化统计数据。这样做是为了解决目标数据集中的分布偏移问题。在另一个前向传播中,我们只使用源样本,并且批量归一化层以推理模式运行。来自这两个前向传播的源样本(弱增强和强增强版本)的 logits 由于批量归一化层的运行方式而略有不同。源样本的最终 logits 是通过对这两对不同 logits 进行线性插值来计算的。这会引入一种一致性正则化形式。此步骤称为**随机 logits 插值**。
  • **分布对齐**用于对齐源标签分布和目标标签分布。这进一步有助于基础模型学习域不变表示。在无监督域自适应的情况下,我们无法访问目标数据集的任何标签。这就是为什么从基础模型生成伪标签的原因。
  • 基础模型为目标样本生成伪标签。该模型很可能会做出错误的预测。随着我们在训练中取得进展,这些错误的预测可能会被传播回去,并损害整体性能。为了弥补这一点,我们根据阈值过滤高置信度预测(因此在`compute_loss_target()`内部使用`mask`)。在 AdaMatch 中,此阈值是相对调整的,这就是为什么它被称为**相对置信度阈值**。

有关这些方法的更多详细信息以及了解它们各自的贡献,请参阅论文

关于`compute_mu()`:

在 AdaMatch 中,使用了一个可变标量而不是一个固定标量。它表示由目标样本贡献的损失的权重。从视觉上看,权重调度程序如下所示。

此调度程序在训练的前半部分将目标域损失的权重从 0 增加到 1。然后它在训练的后半部分将该权重保持为 1。


实例化一个 Wide-ResNet-28-2

作者在本文中使用的示例数据集对上使用了WideResNet-28-2。以下大部分代码参考自此脚本。请注意,以下模型在其内部包含一个缩放层,该层将像素值缩放为 [0, 1]。

def wide_basic(x, n_input_plane, n_output_plane, stride):
    conv_params = [[3, 3, stride, "same"], [3, 3, (1, 1), "same"]]

    n_bottleneck_plane = n_output_plane

    # Residual block
    for i, v in enumerate(conv_params):
        if i == 0:
            if n_input_plane != n_output_plane:
                x = layers.BatchNormalization()(x)
                x = layers.Activation("relu")(x)
                convs = x
            else:
                convs = layers.BatchNormalization()(x)
                convs = layers.Activation("relu")(convs)
            convs = layers.Conv2D(
                n_bottleneck_plane,
                (v[0], v[1]),
                strides=v[2],
                padding=v[3],
                kernel_initializer=INIT,
                kernel_regularizer=regularizers.l2(WEIGHT_DECAY),
                use_bias=False,
            )(convs)
        else:
            convs = layers.BatchNormalization()(convs)
            convs = layers.Activation("relu")(convs)
            convs = layers.Conv2D(
                n_bottleneck_plane,
                (v[0], v[1]),
                strides=v[2],
                padding=v[3],
                kernel_initializer=INIT,
                kernel_regularizer=regularizers.l2(WEIGHT_DECAY),
                use_bias=False,
            )(convs)

    # Shortcut connection: identity function or 1x1
    # convolutional
    #  (depends on difference between input & output shape - this
    #   corresponds to whether we are using the first block in
    #   each
    #   group; see `block_series()`).
    if n_input_plane != n_output_plane:
        shortcut = layers.Conv2D(
            n_output_plane,
            (1, 1),
            strides=stride,
            padding="same",
            kernel_initializer=INIT,
            kernel_regularizer=regularizers.l2(WEIGHT_DECAY),
            use_bias=False,
        )(x)
    else:
        shortcut = x

    return layers.Add()([convs, shortcut])


# Stacking residual units on the same stage
def block_series(x, n_input_plane, n_output_plane, count, stride):
    x = wide_basic(x, n_input_plane, n_output_plane, stride)
    for i in range(2, int(count + 1)):
        x = wide_basic(x, n_output_plane, n_output_plane, stride=1)
    return x


def get_network(image_size=32, num_classes=10):
    n = (DEPTH - 4) / 6
    n_stages = [16, 16 * WIDTH_MULT, 32 * WIDTH_MULT, 64 * WIDTH_MULT]

    inputs = keras.Input(shape=(image_size, image_size, 3))
    x = layers.Rescaling(scale=1.0 / 255)(inputs)

    conv1 = layers.Conv2D(
        n_stages[0],
        (3, 3),
        strides=1,
        padding="same",
        kernel_initializer=INIT,
        kernel_regularizer=regularizers.l2(WEIGHT_DECAY),
        use_bias=False,
    )(x)

    ## Add wide residual blocks ##

    conv2 = block_series(
        conv1,
        n_input_plane=n_stages[0],
        n_output_plane=n_stages[1],
        count=n,
        stride=(1, 1),
    )  # Stage 1

    conv3 = block_series(
        conv2,
        n_input_plane=n_stages[1],
        n_output_plane=n_stages[2],
        count=n,
        stride=(2, 2),
    )  # Stage 2

    conv4 = block_series(
        conv3,
        n_input_plane=n_stages[2],
        n_output_plane=n_stages[3],
        count=n,
        stride=(2, 2),
    )  # Stage 3

    batch_norm = layers.BatchNormalization()(conv4)
    relu = layers.Activation("relu")(batch_norm)

    # Classifier
    trunk_outputs = layers.GlobalAveragePooling2D()(relu)
    outputs = layers.Dense(
        num_classes, kernel_regularizer=regularizers.l2(WEIGHT_DECAY)
    )(trunk_outputs)

    return keras.Model(inputs, outputs)

我们现在可以像这样实例化一个 Wide ResNet 模型。请注意,使用 Wide ResNet 的目的是尽可能地保持实现与原始实现一致。

wrn_model = get_network()
print(f"Model has {wrn_model.count_params()/1e6} Million parameters.")
Model has 1.471226 Million parameters.

实例化 AdaMatch 模型并编译它

reduce_lr = keras.optimizers.schedules.CosineDecay(LEARNING_RATE, TOTAL_STEPS, 0.25)
optimizer = keras.optimizers.Adam(reduce_lr)

adamatch_trainer = AdaMatch(model=wrn_model, total_steps=TOTAL_STEPS)
adamatch_trainer.compile(optimizer=optimizer)

模型训练

total_ds = tf.data.Dataset.zip((final_source_ds, final_target_ds))
adamatch_trainer.fit(total_ds, epochs=EPOCHS)
Epoch 1/10
382/382 [==============================] - 155s 392ms/step - loss: 149259583488.0000
Epoch 2/10
382/382 [==============================] - 145s 379ms/step - loss: 2.0935
Epoch 3/10
382/382 [==============================] - 145s 380ms/step - loss: 1.7237
Epoch 4/10
382/382 [==============================] - 142s 370ms/step - loss: 1.9182
Epoch 5/10
382/382 [==============================] - 141s 367ms/step - loss: 2.9698
Epoch 6/10
382/382 [==============================] - 141s 368ms/step - loss: 3.2622
Epoch 7/10
382/382 [==============================] - 141s 367ms/step - loss: 2.9034
Epoch 8/10
382/382 [==============================] - 141s 368ms/step - loss: 3.2735
Epoch 9/10
382/382 [==============================] - 141s 369ms/step - loss: 3.9449
Epoch 10/10
382/382 [==============================] - 141s 369ms/step - loss: 3.5918

<keras.callbacks.History at 0x7f16eb261e20>

在目标和源测试集上进行评估

# Compile the AdaMatch model to yield accuracy.
adamatch_trained_model = adamatch_trainer.model
adamatch_trained_model.compile(metrics=keras.metrics.SparseCategoricalAccuracy())

# Score on the target test set.
svhn_test = svhn_test.batch(TARGET_BATCH_SIZE).prefetch(AUTO)
_, accuracy = adamatch_trained_model.evaluate(svhn_test)
print(f"Accuracy on target test set: {accuracy * 100:.2f}%")
136/136 [==============================] - 4s 24ms/step - loss: 508.2073 - sparse_categorical_accuracy: 0.2408
Accuracy on target test set: 24.08%

随着训练的进行,此分数会提高。当使用标准分类目标训练相同网络时,它的准确率为**7.20%**,明显低于我们使用 AdaMatch 获得的准确率。你可以查看此笔记本以了解有关超参数和其他实验细节的更多信息。

# Utility function for preprocessing the source test set.
def prepare_test_ds_source(image, label):
    image = tf.image.resize_with_pad(image, RESIZE_TO, RESIZE_TO)
    image = tf.tile(image, [1, 1, 3])
    return image, label


source_test_ds = tf.data.Dataset.from_tensor_slices((mnist_x_test, mnist_y_test))
source_test_ds = (
    source_test_ds.map(prepare_test_ds_source, num_parallel_calls=AUTO)
    .batch(TARGET_BATCH_SIZE)
    .prefetch(AUTO)
)

# Evaluation on the source test set.
_, accuracy = adamatch_trained_model.evaluate(source_test_ds)
print(f"Accuracy on source test set: {accuracy * 100:.2f}%")
53/53 [==============================] - 2s 24ms/step - loss: 508.2072 - sparse_categorical_accuracy: 0.9736
Accuracy on source test set: 97.36%

你可以使用这些模型权重来重现结果。

HuggingFace 上的示例 | 训练过的模型 | 演示 | | :–: | :–: | | Generic badge | Generic badge |