fit() 中的行为作者: fchollet
创建日期 2023/06/27
最后修改日期 2024/08/01
描述: 重写 Model 类中的 `train_step()` 方法,支持 PyTorch。
当你进行监督学习时,你可以使用 `fit()`,一切都会顺利进行。
当你需要控制每一个细节时,你可以从头开始编写自己的训练循环。
但是,如果你需要自定义训练算法,但又想利用 `fit()` 的便捷功能,如回调函数、内置分布式支持或步进融合,该怎么办?
Keras 的核心原则是循序渐进地暴露复杂性。你总应该能够以渐进的方式进入更低级别的流程。如果高级功能不能完全满足你的用例,你不应该就此放弃。你应该能够在保留相应程度的高级便利性的同时,获得对细节的更多控制。
当你需要自定义 `fit()` 的行为时,你应该重写 `Model` 类的训练步骤函数。这个函数由 `fit()` 为每个数据批次调用。然后,你就可以像往常一样调用 `fit()`——它将运行你自己的学习算法。
请注意,这种模式不会阻止你使用函数式 API 构建模型。无论你构建的是 `Sequential` 模型、函数式 API 模型还是子类化模型,都可以这样做。
让我们来看看它是如何工作的。
import os
# This guide can only be run with the torch backend.
os.environ["KERAS_BACKEND"] = "torch"
import torch
import keras
from keras import layers
import numpy as np
让我们从一个简单的例子开始
输入参数 `data` 就是在 `fit()` 中作为训练数据传递的内容。
tf.data.Dataset,通过调用 `fit(dataset, ...)`,那么 `data` 将是 `dataset` 在每个 batch 中产生的内容。在 `train_step()` 方法的函数体中,我们实现了一个常规的训练更新,这与你已经熟悉的内容类似。重要的是,我们通过 `self.compute_loss()` 来计算损失,该方法封装了传递给 `compile()` 的损失函数。
同样,我们对 `self.metrics` 中的指标调用 `metric.update_state(y, y_pred)`,以更新在 `compile()` 中传递的指标的状态,并在最后查询 `self.metrics` 来获取它们当前的值。
class CustomModel(keras.Model):
def train_step(self, data):
# Unpack the data. Its structure depends on your model and
# on what you pass to `fit()`.
x, y = data
# Call torch.nn.Module.zero_grad() to clear the leftover gradients
# for the weights from the previous train step.
self.zero_grad()
# Compute loss
y_pred = self(x, training=True) # Forward pass
loss = self.compute_loss(y=y, y_pred=y_pred)
# Call torch.Tensor.backward() on the loss to compute gradients
# for the weights.
loss.backward()
trainable_weights = [v for v in self.trainable_weights]
gradients = [v.value.grad for v in trainable_weights]
# Update weights
with torch.no_grad():
self.optimizer.apply(gradients, trainable_weights)
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(y, y_pred)
# Return a dict mapping metric names to current value
# Note that it will include the loss (tracked in self.metrics).
return {m.name: m.result() for m in self.metrics}
让我们试试这个
# Construct and compile an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(optimizer="adam", loss="mse", metrics=["mae"])
# Just use `fit` as usual
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.fit(x, y, epochs=3)
Epoch 1/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3410 - loss: 0.1772
Epoch 2/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3336 - loss: 0.1695
Epoch 3/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - mae: 0.3170 - loss: 0.1511
<keras.src.callbacks.history.History at 0x7f48a3255710>
自然,你可以跳过在 `compile()` 中传递损失函数,而是在 `train_step` 中手动完成所有操作。指标也是如此。
这是一个更底层的示例,它只使用 `compile()` 来配置优化器
class CustomModel(keras.Model):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.loss_tracker = keras.metrics.Mean(name="loss")
self.mae_metric = keras.metrics.MeanAbsoluteError(name="mae")
self.loss_fn = keras.losses.MeanSquaredError()
def train_step(self, data):
x, y = data
# Call torch.nn.Module.zero_grad() to clear the leftover gradients
# for the weights from the previous train step.
self.zero_grad()
# Compute loss
y_pred = self(x, training=True) # Forward pass
loss = self.loss_fn(y, y_pred)
# Call torch.Tensor.backward() on the loss to compute gradients
# for the weights.
loss.backward()
trainable_weights = [v for v in self.trainable_weights]
gradients = [v.value.grad for v in trainable_weights]
# Update weights
with torch.no_grad():
self.optimizer.apply(gradients, trainable_weights)
# Compute our own metrics
self.loss_tracker.update_state(loss)
self.mae_metric.update_state(y, y_pred)
return {
"loss": self.loss_tracker.result(),
"mae": self.mae_metric.result(),
}
@property
def metrics(self):
# We list our `Metric` objects here so that `reset_states()` can be
# called automatically at the start of each epoch
# or at the start of `evaluate()`.
return [self.loss_tracker, self.mae_metric]
# Construct an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
# We don't pass a loss or metrics here.
model.compile(optimizer="adam")
# Just use `fit` as usual -- you can use callbacks, etc.
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.fit(x, y, epochs=5)
Epoch 1/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.6173 - mae: 0.6607
Epoch 2/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.2340 - mae: 0.3883
Epoch 3/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.1922 - mae: 0.3517
Epoch 4/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.1802 - mae: 0.3411
Epoch 5/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - loss: 0.1862 - mae: 0.3505
<keras.src.callbacks.history.History at 0x7f48975ccbd0>
你可能已经注意到,我们第一个基础示例没有提及样本权重。如果你想支持 `fit()` 的 `sample_weight` 和 `class_weight` 参数,你只需执行以下操作:
class CustomModel(keras.Model):
def train_step(self, data):
# Unpack the data. Its structure depends on your model and
# on what you pass to `fit()`.
if len(data) == 3:
x, y, sample_weight = data
else:
sample_weight = None
x, y = data
# Call torch.nn.Module.zero_grad() to clear the leftover gradients
# for the weights from the previous train step.
self.zero_grad()
# Compute loss
y_pred = self(x, training=True) # Forward pass
loss = self.compute_loss(
y=y,
y_pred=y_pred,
sample_weight=sample_weight,
)
# Call torch.Tensor.backward() on the loss to compute gradients
# for the weights.
loss.backward()
trainable_weights = [v for v in self.trainable_weights]
gradients = [v.value.grad for v in trainable_weights]
# Update weights
with torch.no_grad():
self.optimizer.apply(gradients, trainable_weights)
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(y, y_pred, sample_weight=sample_weight)
# Return a dict mapping metric names to current value
# Note that it will include the loss (tracked in self.metrics).
return {m.name: m.result() for m in self.metrics}
# Construct and compile an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(optimizer="adam", loss="mse", metrics=["mae"])
# You can now use sample_weight argument
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
sw = np.random.random((1000, 1))
model.fit(x, y, sample_weight=sw, epochs=3)
Epoch 1/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3216 - loss: 0.0827
Epoch 2/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3156 - loss: 0.0803
Epoch 3/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.3085 - loss: 0.0760
<keras.src.callbacks.history.History at 0x7f48975d7bd0>
如果你想对 `model.evaluate()` 的调用做同样的事情怎么办?那么你可以以完全相同的方式重写 `test_step`。下面是它的样子:
class CustomModel(keras.Model):
def test_step(self, data):
# Unpack the data
x, y = data
# Compute predictions
y_pred = self(x, training=False)
# Updates the metrics tracking the loss
loss = self.compute_loss(y=y, y_pred=y_pred)
# Update the metrics.
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(y, y_pred)
# Return a dict mapping metric names to current value.
# Note that it will include the loss (tracked in self.metrics).
return {m.name: m.result() for m in self.metrics}
# Construct an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(loss="mse", metrics=["mae"])
# Evaluate with our custom test_step
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.evaluate(x, y)
1/32 [37m━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - mae: 0.8706 - loss: 0.9344
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step - mae: 0.8959 - loss: 0.9952
[1.0077838897705078, 0.8984771370887756]
让我们来回顾一个利用你刚刚学到的所有知识的端到端示例。
我们考虑:
# Create the discriminator
discriminator = keras.Sequential(
[
keras.Input(shape=(28, 28, 1)),
layers.Conv2D(64, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2D(128, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.GlobalMaxPooling2D(),
layers.Dense(1),
],
name="discriminator",
)
# Create the generator
latent_dim = 128
generator = keras.Sequential(
[
keras.Input(shape=(latent_dim,)),
# We want to generate 128 coefficients to reshape into a 7x7x128 map
layers.Dense(7 * 7 * 128),
layers.LeakyReLU(negative_slope=0.2),
layers.Reshape((7, 7, 128)),
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2D(1, (7, 7), padding="same", activation="sigmoid"),
],
name="generator",
)
这是一个功能齐全的 GAN 类,它重写了 `compile()` 以使用其自己的签名,并在 `train_step` 中用 17 行代码实现了整个 GAN 算法。
class GAN(keras.Model):
def __init__(self, discriminator, generator, latent_dim):
super().__init__()
self.discriminator = discriminator
self.generator = generator
self.latent_dim = latent_dim
self.d_loss_tracker = keras.metrics.Mean(name="d_loss")
self.g_loss_tracker = keras.metrics.Mean(name="g_loss")
self.seed_generator = keras.random.SeedGenerator(1337)
self.built = True
@property
def metrics(self):
return [self.d_loss_tracker, self.g_loss_tracker]
def compile(self, d_optimizer, g_optimizer, loss_fn):
super().compile()
self.d_optimizer = d_optimizer
self.g_optimizer = g_optimizer
self.loss_fn = loss_fn
def train_step(self, real_images):
device = "cuda" if torch.cuda.is_available() else "cpu"
if isinstance(real_images, tuple) or isinstance(real_images, list):
real_images = real_images[0]
# Sample random points in the latent space
batch_size = real_images.shape[0]
random_latent_vectors = keras.random.normal(
shape=(batch_size, self.latent_dim), seed=self.seed_generator
)
# Decode them to fake images
generated_images = self.generator(random_latent_vectors)
# Combine them with real images
real_images = torch.tensor(real_images, device=device)
combined_images = torch.concat([generated_images, real_images], axis=0)
# Assemble labels discriminating real from fake images
labels = torch.concat(
[
torch.ones((batch_size, 1), device=device),
torch.zeros((batch_size, 1), device=device),
],
axis=0,
)
# Add random noise to the labels - important trick!
labels += 0.05 * keras.random.uniform(labels.shape, seed=self.seed_generator)
# Train the discriminator
self.zero_grad()
predictions = self.discriminator(combined_images)
d_loss = self.loss_fn(labels, predictions)
d_loss.backward()
grads = [v.value.grad for v in self.discriminator.trainable_weights]
with torch.no_grad():
self.d_optimizer.apply(grads, self.discriminator.trainable_weights)
# Sample random points in the latent space
random_latent_vectors = keras.random.normal(
shape=(batch_size, self.latent_dim), seed=self.seed_generator
)
# Assemble labels that say "all real images"
misleading_labels = torch.zeros((batch_size, 1), device=device)
# Train the generator (note that we should *not* update the weights
# of the discriminator)!
self.zero_grad()
predictions = self.discriminator(self.generator(random_latent_vectors))
g_loss = self.loss_fn(misleading_labels, predictions)
grads = g_loss.backward()
grads = [v.value.grad for v in self.generator.trainable_weights]
with torch.no_grad():
self.g_optimizer.apply(grads, self.generator.trainable_weights)
# Update metrics and return their value.
self.d_loss_tracker.update_state(d_loss)
self.g_loss_tracker.update_state(g_loss)
return {
"d_loss": self.d_loss_tracker.result(),
"g_loss": self.g_loss_tracker.result(),
}
让我们来试驾一下
# Prepare the dataset. We use both the training & test MNIST digits.
batch_size = 64
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
all_digits = np.concatenate([x_train, x_test])
all_digits = all_digits.astype("float32") / 255.0
all_digits = np.reshape(all_digits, (-1, 28, 28, 1))
# Create a TensorDataset
dataset = torch.utils.data.TensorDataset(
torch.from_numpy(all_digits), torch.from_numpy(all_digits)
)
# Create a DataLoader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
gan = GAN(discriminator=discriminator, generator=generator, latent_dim=latent_dim)
gan.compile(
d_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
g_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
loss_fn=keras.losses.BinaryCrossentropy(from_logits=True),
)
gan.fit(dataloader, epochs=1)
1094/1094 ━━━━━━━━━━━━━━━━━━━━ 394s 360ms/step - d_loss: 0.2436 - g_loss: 4.7259
<keras.src.callbacks.history.History at 0x7f489760a490>
深度学习的思想很简单,为什么它的实现会很痛苦呢?