开发者指南 / 顺序模型

顺序模型

作者: fchollet
创建日期 2020/04/12
上次修改日期 2023/06/25
描述:顺序模型的完整指南。

在 Colab 中查看 GitHub 源代码


设置

import keras
from keras import layers
from keras import ops

何时使用顺序模型

Sequential 模型适用于简单的层堆叠,其中每一层只有一个输入张量和一个输出张量

从示意图上看,以下 Sequential 模型

# Define Sequential model with 3 layers
model = keras.Sequential(
    [
        layers.Dense(2, activation="relu", name="layer1"),
        layers.Dense(3, activation="relu", name="layer2"),
        layers.Dense(4, name="layer3"),
    ]
)
# Call model on a test input
x = ops.ones((3, 3))
y = model(x)

等价于此函数

# Create 3 layers
layer1 = layers.Dense(2, activation="relu", name="layer1")
layer2 = layers.Dense(3, activation="relu", name="layer2")
layer3 = layers.Dense(4, name="layer3")

# Call layers on a test input
x = ops.ones((3, 3))
y = layer3(layer2(layer1(x)))

顺序模型不适用于以下情况:

  • 您的模型有多个输入或多个输出
  • 您的任何层有多个输入或多个输出
  • 您需要进行层共享
  • 您需要非线性拓扑结构(例如残差连接、多分支模型)

创建顺序模型

您可以通过将层列表传递给 Sequential 构造函数来创建一个顺序模型

model = keras.Sequential(
    [
        layers.Dense(2, activation="relu"),
        layers.Dense(3, activation="relu"),
        layers.Dense(4),
    ]
)

可以通过 layers 属性访问其层

model.layers
[<Dense name=dense, built=False>,
 <Dense name=dense_1, built=False>,
 <Dense name=dense_2, built=False>]

您还可以通过 add() 方法增量创建顺序模型

model = keras.Sequential()
model.add(layers.Dense(2, activation="relu"))
model.add(layers.Dense(3, activation="relu"))
model.add(layers.Dense(4))

请注意,还有一个对应的 pop() 方法可以删除层:顺序模型的行为非常类似于层列表。

model.pop()
print(len(model.layers))  # 2
2

另请注意,Sequential 构造函数接受一个 name 参数,就像 Keras 中的任何层或模型一样。这对于使用语义上有意义的名称注释 TensorBoard 图很有用。

model = keras.Sequential(name="my_sequential")
model.add(layers.Dense(2, activation="relu", name="layer1"))
model.add(layers.Dense(3, activation="relu", name="layer2"))
model.add(layers.Dense(4, name="layer3"))

提前指定输入形状

通常,Keras 中的所有层都需要知道其输入的形状才能创建其权重。因此,当您像这样创建层时,最初它没有权重

layer = layers.Dense(3)
layer.weights  # Empty
[]

它在第一次被输入调用时创建其权重,因为权重的形状取决于输入的形状

# Call layer on a test input
x = ops.ones((1, 4))
y = layer(x)
layer.weights  # Now it has weights, of shape (4, 3) and (3,)
[<KerasVariable shape=(4, 3), dtype=float32, path=dense_6/kernel>,
 <KerasVariable shape=(3,), dtype=float32, path=dense_6/bias>]

自然,这也适用于顺序模型。当您实例化一个没有输入形状的顺序模型时,它不会被“构建”:它没有权重(并且调用 model.weights 会导致一个错误,说明这一点)。权重是在模型第一次看到一些输入数据时创建的

model = keras.Sequential(
    [
        layers.Dense(2, activation="relu"),
        layers.Dense(3, activation="relu"),
        layers.Dense(4),
    ]
)  # No weights at this stage!

# At this point, you can't do this:
# model.weights

# You also can't do this:
# model.summary()

# Call the model on a test input
x = ops.ones((1, 4))
y = model(x)
print("Number of weights after calling the model:", len(model.weights))  # 6
Number of weights after calling the model: 6

一旦模型被“构建”,您就可以调用其 summary() 方法来显示其内容

model.summary()
Model: "sequential_3"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ dense_7 (Dense)                 │ (1, 2)                    │         10 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_8 (Dense)                 │ (1, 3)                    │          9 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_9 (Dense)                 │ (1, 4)                    │         16 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 35 (140.00 B)
 Trainable params: 35 (140.00 B)
 Non-trainable params: 0 (0.00 B)

但是,在增量构建顺序模型时,能够显示迄今为止模型的摘要(包括当前输出形状)非常有用。在这种情况下,您应该通过将 Input 对象传递给您的模型来开始您的模型,以便它从一开始就知道其输入形状

model = keras.Sequential()
model.add(keras.Input(shape=(4,)))
model.add(layers.Dense(2, activation="relu"))

model.summary()
Model: "sequential_4"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ dense_10 (Dense)                │ (None, 2)                 │         10 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 10 (40.00 B)
 Trainable params: 10 (40.00 B)
 Non-trainable params: 0 (0.00 B)

请注意,Input 对象不会显示为 model.layers 的一部分,因为它不是层

model.layers
[<Dense name=dense_10, built=True>]

使用预定义输入形状构建的模型始终具有权重(即使在看到任何数据之前)并且始终具有定义的输出形状。

通常,如果您知道顺序模型的输入形状,建议始终提前指定它。


常见的调试工作流程:add() + summary()

在构建新的顺序架构时,使用 add() 增量堆叠层并频繁打印模型摘要非常有用。例如,这使您能够监控 Conv2DMaxPooling2D 层堆叠如何对图像特征图进行下采样

model = keras.Sequential()
model.add(keras.Input(shape=(250, 250, 3)))  # 250x250 RGB images
model.add(layers.Conv2D(32, 5, strides=2, activation="relu"))
model.add(layers.Conv2D(32, 3, activation="relu"))
model.add(layers.MaxPooling2D(3))

# Can you guess what the current output shape is at this point? Probably not.
# Let's just print it:
model.summary()

# The answer was: (40, 40, 32), so we can keep downsampling...

model.add(layers.Conv2D(32, 3, activation="relu"))
model.add(layers.Conv2D(32, 3, activation="relu"))
model.add(layers.MaxPooling2D(3))
model.add(layers.Conv2D(32, 3, activation="relu"))
model.add(layers.Conv2D(32, 3, activation="relu"))
model.add(layers.MaxPooling2D(2))

# And now?
model.summary()

# Now that we have 4x4 feature maps, time to apply global max pooling.
model.add(layers.GlobalMaxPooling2D())

# Finally, we add a classification layer.
model.add(layers.Dense(10))
Model: "sequential_5"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d (Conv2D)                 │ (None, 123, 123, 32)      │      2,432 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_1 (Conv2D)               │ (None, 121, 121, 32)      │      9,248 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D)    │ (None, 40, 40, 32)        │          0 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 11,680 (45.62 KB)
 Trainable params: 11,680 (45.62 KB)
 Non-trainable params: 0 (0.00 B)
Model: "sequential_5"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d (Conv2D)                 │ (None, 123, 123, 32)      │      2,432 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_1 (Conv2D)               │ (None, 121, 121, 32)      │      9,248 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D)    │ (None, 40, 40, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_2 (Conv2D)               │ (None, 38, 38, 32)        │      9,248 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_3 (Conv2D)               │ (None, 36, 36, 32)        │      9,248 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_1 (MaxPooling2D)  │ (None, 12, 12, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_4 (Conv2D)               │ (None, 10, 10, 32)        │      9,248 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_5 (Conv2D)               │ (None, 8, 8, 32)          │      9,248 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_2 (MaxPooling2D)  │ (None, 4, 4, 32)          │          0 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 48,672 (190.12 KB)
 Trainable params: 48,672 (190.12 KB)
 Non-trainable params: 0 (0.00 B)

非常实用,对吧?


拥有模型后该做什么

一旦您的模型架构准备就绪,您将需要


使用顺序模型进行特征提取

一旦构建了顺序模型,它就会像函数式 API 模型一样工作。这意味着每一层都有一个 inputoutput 属性。这些属性可用于执行一些巧妙的操作,例如快速创建一个模型,该模型提取顺序模型中所有中间层的输出

initial_model = keras.Sequential(
    [
        keras.Input(shape=(250, 250, 3)),
        layers.Conv2D(32, 5, strides=2, activation="relu"),
        layers.Conv2D(32, 3, activation="relu"),
        layers.Conv2D(32, 3, activation="relu"),
    ]
)
feature_extractor = keras.Model(
    inputs=initial_model.inputs,
    outputs=[layer.output for layer in initial_model.layers],
)

# Call feature extractor on test input.
x = ops.ones((1, 250, 250, 3))
features = feature_extractor(x)

这是一个类似的示例,它只从一层提取特征

initial_model = keras.Sequential(
    [
        keras.Input(shape=(250, 250, 3)),
        layers.Conv2D(32, 5, strides=2, activation="relu"),
        layers.Conv2D(32, 3, activation="relu", name="my_intermediate_layer"),
        layers.Conv2D(32, 3, activation="relu"),
    ]
)
feature_extractor = keras.Model(
    inputs=initial_model.inputs,
    outputs=initial_model.get_layer(name="my_intermediate_layer").output,
)
# Call feature extractor on test input.
x = ops.ones((1, 250, 250, 3))
features = feature_extractor(x)

使用顺序模型进行迁移学习

迁移学习包括冻结模型中的底层,只训练顶层。如果您不熟悉它,请务必阅读我们的迁移学习指南

以下是在涉及顺序模型的两种常见的迁移学习蓝图。

首先,假设您有一个顺序模型,并且您希望冻结除最后一层之外的所有层。在这种情况下,您只需遍历 model.layers 并在每一层上设置 layer.trainable = False,除了最后一层。像这样

model = keras.Sequential([
    keras.Input(shape=(784)),
    layers.Dense(32, activation='relu'),
    layers.Dense(32, activation='relu'),
    layers.Dense(32, activation='relu'),
    layers.Dense(10),
])

# Presumably you would want to first load pre-trained weights.
model.load_weights(...)

# Freeze all layers except the last one.
for layer in model.layers[:-1]:
  layer.trainable = False

# Recompile and train (this will only update the weights of the last layer).
model.compile(...)
model.fit(...)

另一种常见的蓝图是使用顺序模型堆叠一个预训练模型和一些新初始化的分类层。像这样

# Load a convolutional base with pre-trained weights
base_model = keras.applications.Xception(
    weights='imagenet',
    include_top=False,
    pooling='avg')

# Freeze the base model
base_model.trainable = False

# Use a Sequential model to add a trainable classifier on top
model = keras.Sequential([
    base_model,
    layers.Dense(1000),
])

# Compile & train
model.compile(...)
model.fit(...)

如果您进行迁移学习,您可能会发现自己经常使用这两种模式。

关于顺序模型,您需要了解的知识就这么多!

要了解有关在 Keras 中构建模型的更多信息,请参阅