fit()
自定义 JAX 中的行为作者: fchollet
创建日期 2023/06/27
上次修改日期 2023/06/27
描述:使用 JAX 重写 Model 类的训练步骤。
在进行监督学习时,您可以使用 `fit()`,一切都会顺利进行。
当您需要控制每个细节时,您可以完全从头开始编写自己的训练循环。
但是,如果您需要自定义训练算法,但仍然希望受益于 `fit()` 的便捷功能(例如回调、内置分布式支持或步骤融合),该怎么办?
Keras 的核心原则之一是**逐步公开复杂性**。您应该始终能够以逐步的方式进入更低级别的流程。如果高级功能不能完全满足您的用例,您不应该掉入陷阱。您应该能够获得对细微细节的更多控制,同时保留相应数量的高级便利性。
当您需要自定义 `fit()` 的行为时,您应该**重写 `Model` 类的训练步骤函数**。这是 `fit()` 为每一批数据调用的函数。然后,您将能够像往常一样调用 `fit()`——它将运行您自己的学习算法。
请注意,此模式不会阻止您使用函数式 API 构建模型。无论您是构建 `Sequential` 模型、函数式 API 模型还是子类模型,都可以这样做。
让我们看看它是如何工作的。
import os
# This guide can only be run with the JAX backend.
os.environ["KERAS_BACKEND"] = "jax"
import jax
import keras
import numpy as np
让我们从一个简单的示例开始
keras.Model
。请注意,您还可以通过以下方式考虑 `sample_weight` 参数:
class CustomModel(keras.Model):
def compute_loss_and_updates(
self,
trainable_variables,
non_trainable_variables,
x,
y,
training=False,
):
y_pred, non_trainable_variables = self.stateless_call(
trainable_variables,
non_trainable_variables,
x,
training=training,
)
loss = self.compute_loss(x, y, y_pred)
return loss, (y_pred, non_trainable_variables)
def train_step(self, state, data):
(
trainable_variables,
non_trainable_variables,
optimizer_variables,
metrics_variables,
) = state
x, y = data
# Get the gradient function.
grad_fn = jax.value_and_grad(self.compute_loss_and_updates, has_aux=True)
# Compute the gradients.
(loss, (y_pred, non_trainable_variables)), grads = grad_fn(
trainable_variables,
non_trainable_variables,
x,
y,
training=True,
)
# Update trainable variables and optimizer variables.
(
trainable_variables,
optimizer_variables,
) = self.optimizer.stateless_apply(
optimizer_variables, grads, trainable_variables
)
# Update metrics.
new_metrics_vars = []
logs = {}
for metric in self.metrics:
this_metric_vars = metrics_variables[
len(new_metrics_vars) : len(new_metrics_vars) + len(metric.variables)
]
if metric.name == "loss":
this_metric_vars = metric.stateless_update_state(this_metric_vars, loss)
else:
this_metric_vars = metric.stateless_update_state(
this_metric_vars, y, y_pred
)
logs[metric.name] = metric.stateless_result(this_metric_vars)
new_metrics_vars += this_metric_vars
# Return metric logs and updated state variables.
state = (
trainable_variables,
non_trainable_variables,
optimizer_variables,
new_metrics_vars,
)
return logs, state
让我们试一试
# Construct and compile an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(optimizer="adam", loss="mse", metrics=["mae"])
# Just use `fit` as usual
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.fit(x, y, epochs=3)
Epoch 1/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 3ms/step - mae: 1.0022 - loss: 1.2464
Epoch 2/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 198us/step - mae: 0.5811 - loss: 0.4912
Epoch 3/3
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 231us/step - mae: 0.4386 - loss: 0.2905
<keras.src.callbacks.history.History at 0x14da599c0>
当然,您可以跳过在 `compile()` 中传递损失函数,而是在 `train_step` 中手动执行所有操作。指标也是如此。
这是一个更低级别的示例,它仅使用 `compile()` 来配置优化器
class CustomModel(keras.Model):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.loss_tracker = keras.metrics.Mean(name="loss")
self.mae_metric = keras.metrics.MeanAbsoluteError(name="mae")
self.loss_fn = keras.losses.MeanSquaredError()
def compute_loss_and_updates(
self,
trainable_variables,
non_trainable_variables,
x,
y,
training=False,
):
y_pred, non_trainable_variables = self.stateless_call(
trainable_variables,
non_trainable_variables,
x,
training=training,
)
loss = self.loss_fn(y, y_pred)
return loss, (y_pred, non_trainable_variables)
def train_step(self, state, data):
(
trainable_variables,
non_trainable_variables,
optimizer_variables,
metrics_variables,
) = state
x, y = data
# Get the gradient function.
grad_fn = jax.value_and_grad(self.compute_loss_and_updates, has_aux=True)
# Compute the gradients.
(loss, (y_pred, non_trainable_variables)), grads = grad_fn(
trainable_variables,
non_trainable_variables,
x,
y,
training=True,
)
# Update trainable variables and optimizer variables.
(
trainable_variables,
optimizer_variables,
) = self.optimizer.stateless_apply(
optimizer_variables, grads, trainable_variables
)
# Update metrics.
loss_tracker_vars = metrics_variables[: len(self.loss_tracker.variables)]
mae_metric_vars = metrics_variables[len(self.loss_tracker.variables) :]
loss_tracker_vars = self.loss_tracker.stateless_update_state(
loss_tracker_vars, loss
)
mae_metric_vars = self.mae_metric.stateless_update_state(
mae_metric_vars, y, y_pred
)
logs = {}
logs[self.loss_tracker.name] = self.loss_tracker.stateless_result(
loss_tracker_vars
)
logs[self.mae_metric.name] = self.mae_metric.stateless_result(mae_metric_vars)
new_metrics_vars = loss_tracker_vars + mae_metric_vars
# Return metric logs and updated state variables.
state = (
trainable_variables,
non_trainable_variables,
optimizer_variables,
new_metrics_vars,
)
return logs, state
@property
def metrics(self):
# We list our `Metric` objects here so that `reset_states()` can be
# called automatically at the start of each epoch
# or at the start of `evaluate()`.
return [self.loss_tracker, self.mae_metric]
# Construct an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
# We don't pass a loss or metrics here.
model.compile(optimizer="adam")
# Just use `fit` as usual -- you can use callbacks, etc.
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.fit(x, y, epochs=5)
Epoch 1/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 2ms/step - loss: 0.6085 - mae: 0.6580
Epoch 2/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 215us/step - loss: 0.2630 - mae: 0.4141
Epoch 3/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 202us/step - loss: 0.2271 - mae: 0.3835
Epoch 4/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 192us/step - loss: 0.2093 - mae: 0.3714
Epoch 5/5
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 194us/step - loss: 0.2188 - mae: 0.3818
<keras.src.callbacks.history.History at 0x14de01420>
如果您想对 `model.evaluate()` 的调用执行相同的操作怎么办?然后您将以完全相同的方式覆盖 `test_step`。以下是它的样子
class CustomModel(keras.Model):
def test_step(self, state, data):
# Unpack the data.
x, y = data
(
trainable_variables,
non_trainable_variables,
metrics_variables,
) = state
# Compute predictions and loss.
y_pred, non_trainable_variables = self.stateless_call(
trainable_variables,
non_trainable_variables,
x,
training=False,
)
loss = self.compute_loss(x, y, y_pred)
# Update metrics.
new_metrics_vars = []
for metric in self.metrics:
this_metric_vars = metrics_variables[
len(new_metrics_vars) : len(new_metrics_vars) + len(metric.variables)
]
if metric.name == "loss":
this_metric_vars = metric.stateless_update_state(this_metric_vars, loss)
else:
this_metric_vars = metric.stateless_update_state(
this_metric_vars, y, y_pred
)
logs = metric.stateless_result(this_metric_vars)
new_metrics_vars += this_metric_vars
# Return metric logs and updated state variables.
state = (
trainable_variables,
non_trainable_variables,
new_metrics_vars,
)
return logs, state
# Construct an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(loss="mse", metrics=["mae"])
# Evaluate with our custom test_step
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.evaluate(x, y)
32/32 ━━━━━━━━━━━━━━━━━━━━ 0s 973us/step - mae: 0.7887 - loss: 0.8385
[0.8385222554206848, 0.7956181168556213]
就是这样!