代码示例 / 时间序列 / 使用自编码器进行时间序列异常检测

使用自编码器进行时间序列异常检测

作者: pavithrasv
创建日期 2020/05/31
最后修改日期 2020/05/31
描述: 使用自编码器检测时间序列中的异常。

ⓘ 此示例使用 Keras 3

在 Colab 中查看 GitHub 源代码


简介

此脚本演示了如何使用重构卷积自编码器模型来检测时间序列数据中的异常。


设置

import numpy as np
import pandas as pd
import keras
from keras import layers
from matplotlib import pyplot as plt

加载数据

我们将使用 Numenta 异常基准 (NAB) 数据集。它提供了包含标记异常行为时间段的人工时间序列数据。数据是排序的、带有时间戳的、单值指标。

我们将使用 art_daily_small_noise.csv 文件进行训练,并使用 art_daily_jumpsup.csv 文件进行测试。此数据集的简单性使我们能够有效地演示异常检测。

master_url_root = "https://raw.githubusercontent.com/numenta/NAB/master/data/"

df_small_noise_url_suffix = "artificialNoAnomaly/art_daily_small_noise.csv"
df_small_noise_url = master_url_root + df_small_noise_url_suffix
df_small_noise = pd.read_csv(
    df_small_noise_url, parse_dates=True, index_col="timestamp"
)

df_daily_jumpsup_url_suffix = "artificialWithAnomaly/art_daily_jumpsup.csv"
df_daily_jumpsup_url = master_url_root + df_daily_jumpsup_url_suffix
df_daily_jumpsup = pd.read_csv(
    df_daily_jumpsup_url, parse_dates=True, index_col="timestamp"
)

快速查看数据

print(df_small_noise.head())

print(df_daily_jumpsup.head())
                         value
timestamp                     
2014-04-01 00:00:00  18.324919
2014-04-01 00:05:00  21.970327
2014-04-01 00:10:00  18.624806
2014-04-01 00:15:00  21.953684
2014-04-01 00:20:00  21.909120
                         value
timestamp                     
2014-04-01 00:00:00  19.761252
2014-04-01 00:05:00  20.500833
2014-04-01 00:10:00  19.961641
2014-04-01 00:15:00  21.490266
2014-04-01 00:20:00  20.187739

可视化数据

没有异常的时间序列数据

我们将使用以下数据进行训练。

fig, ax = plt.subplots()
df_small_noise.plot(legend=False, ax=ax)
plt.show()

png

有异常的时间序列数据

我们将使用以下数据进行测试,看看数据中的突然跳跃是否被检测为异常。

fig, ax = plt.subplots()
df_daily_jumpsup.plot(legend=False, ax=ax)
plt.show()

png


准备训练数据

从训练时间序列数据文件中获取数据值,并规范化 value 数据。我们每 5 分钟都有一个 value,持续 14 天。

  • 24 * 60 / 5 = 每天 288 个时间步长
  • 288 * 14 = 总共 4032 个数据点
# Normalize and save the mean and std we get,
# for normalizing test data.
training_mean = df_small_noise.mean()
training_std = df_small_noise.std()
df_training_value = (df_small_noise - training_mean) / training_std
print("Number of training samples:", len(df_training_value))
Number of training samples: 4032

创建序列

创建序列,将来自训练数据的 TIME_STEPS 个连续数据值组合在一起。

TIME_STEPS = 288


# Generated training sequences for use in the model.
def create_sequences(values, time_steps=TIME_STEPS):
    output = []
    for i in range(len(values) - time_steps + 1):
        output.append(values[i : (i + time_steps)])
    return np.stack(output)


x_train = create_sequences(df_training_value.values)
print("Training input shape: ", x_train.shape)
Training input shape:  (3745, 288, 1)

构建模型

我们将构建一个卷积重构自编码器模型。该模型将接收形状为 (batch_size, sequence_length, num_features) 的输入,并返回相同形状的输出。在这种情况下,sequence_length 为 288,num_features 为 1。

model = keras.Sequential(
    [
        layers.Input(shape=(x_train.shape[1], x_train.shape[2])),
        layers.Conv1D(
            filters=32,
            kernel_size=7,
            padding="same",
            strides=2,
            activation="relu",
        ),
        layers.Dropout(rate=0.2),
        layers.Conv1D(
            filters=16,
            kernel_size=7,
            padding="same",
            strides=2,
            activation="relu",
        ),
        layers.Conv1DTranspose(
            filters=16,
            kernel_size=7,
            padding="same",
            strides=2,
            activation="relu",
        ),
        layers.Dropout(rate=0.2),
        layers.Conv1DTranspose(
            filters=32,
            kernel_size=7,
            padding="same",
            strides=2,
            activation="relu",
        ),
        layers.Conv1DTranspose(filters=1, kernel_size=7, padding="same"),
    ]
)
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.001), loss="mse")
model.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv1d (Conv1D)                 │ (None, 144, 32)           │        256 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout (Dropout)               │ (None, 144, 32)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv1d_1 (Conv1D)               │ (None, 72, 16)            │      3,600 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv1d_transpose                │ (None, 144, 16)           │      1,808 │
│ (Conv1DTranspose)               │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dropout_1 (Dropout)             │ (None, 144, 16)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv1d_transpose_1              │ (None, 288, 32)           │      3,616 │
│ (Conv1DTranspose)               │                           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv1d_transpose_2              │ (None, 288, 1)            │        225 │
│ (Conv1DTranspose)               │                           │            │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 9,505 (37.13 KB)
 Trainable params: 9,505 (37.13 KB)
 Non-trainable params: 0 (0.00 B)

训练模型

请注意,我们使用 x_train 作为输入和目标,因为这是一个重构模型。

history = model.fit(
    x_train,
    x_train,
    epochs=50,
    batch_size=128,
    validation_split=0.1,
    callbacks=[
        keras.callbacks.EarlyStopping(monitor="val_loss", patience=5, mode="min")
    ],
)
Epoch 1/50
 26/27 ━━━━━━━━━━━━━━━━━━━━  0s 4ms/step - loss: 0.8419

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1700346169.474466 1961179 device_compiler.h:187] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.

 27/27 ━━━━━━━━━━━━━━━━━━━━ 10s 187ms/step - loss: 0.8262 - val_loss: 0.2280
Epoch 2/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.1485 - val_loss: 0.0513
Epoch 3/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0659 - val_loss: 0.0389
Epoch 4/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0563 - val_loss: 0.0341
Epoch 5/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0489 - val_loss: 0.0298
Epoch 6/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0434 - val_loss: 0.0272
Epoch 7/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0386 - val_loss: 0.0258
Epoch 8/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0349 - val_loss: 0.0241
Epoch 9/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0319 - val_loss: 0.0230
Epoch 10/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0297 - val_loss: 0.0236
Epoch 11/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0279 - val_loss: 0.0233
Epoch 12/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0264 - val_loss: 0.0225
Epoch 13/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0255 - val_loss: 0.0228
Epoch 14/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0245 - val_loss: 0.0223
Epoch 15/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0236 - val_loss: 0.0234
Epoch 16/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0227 - val_loss: 0.0256
Epoch 17/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0219 - val_loss: 0.0240
Epoch 18/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0214 - val_loss: 0.0245
Epoch 19/50
 27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0207 - val_loss: 0.0250

让我们绘制训练和验证损失,看看训练情况如何。

plt.plot(history.history["loss"], label="Training Loss")
plt.plot(history.history["val_loss"], label="Validation Loss")
plt.legend()
plt.show()

png


检测异常

我们将通过确定我们的模型可以多好地重构输入数据来检测异常。

  1. 查找训练样本的 MAE 损失。
  2. 找到最大 MAE 损失值。这是我们的模型尝试重构样本时表现最差的情况。我们将以此作为异常检测的 threshold(阈值)。
  3. 如果样本的重构损失大于此 threshold 值,那么我们可以推断模型正在看到它不熟悉的模式。我们将此样本标记为 anomaly(异常)。
# Get train MAE loss.
x_train_pred = model.predict(x_train)
train_mae_loss = np.mean(np.abs(x_train_pred - x_train), axis=1)

plt.hist(train_mae_loss, bins=50)
plt.xlabel("Train MAE loss")
plt.ylabel("No of samples")
plt.show()

# Get reconstruction loss threshold.
threshold = np.max(train_mae_loss)
print("Reconstruction error threshold: ", threshold)
 118/118 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step

png

Reconstruction error threshold:  0.1232659916089631

比较重构

为了好玩,让我们看看我们的模型是如何重构第一个样本的。这是我们训练数据集第 1 天的 288 个时间步长。

# Checking how the first sequence is learnt
plt.plot(x_train[0])
plt.plot(x_train_pred[0])
plt.show()

png

准备测试数据

df_test_value = (df_daily_jumpsup - training_mean) / training_std
fig, ax = plt.subplots()
df_test_value.plot(legend=False, ax=ax)
plt.show()

# Create sequences from test values.
x_test = create_sequences(df_test_value.values)
print("Test input shape: ", x_test.shape)

# Get test MAE loss.
x_test_pred = model.predict(x_test)
test_mae_loss = np.mean(np.abs(x_test_pred - x_test), axis=1)
test_mae_loss = test_mae_loss.reshape((-1))

plt.hist(test_mae_loss, bins=50)
plt.xlabel("test MAE loss")
plt.ylabel("No of samples")
plt.show()

# Detect all the samples which are anomalies.
anomalies = test_mae_loss > threshold
print("Number of anomaly samples: ", np.sum(anomalies))
print("Indices of anomaly samples: ", np.where(anomalies))

png

Test input shape:  (3745, 288, 1)
 118/118 ━━━━━━━━━━━━━━━━━━━━ 0s 1ms/step

png

Number of anomaly samples:  394
Indices of anomaly samples:  (array([1654, 2702, 2703, 2704, 2705, 2706, 2707, 2708, 2709, 2710, 2711,
       2712, 2713, 2714, 2715, 2716, 2717, 2718, 2719, 2720, 2721, 2722,
       2723, 2724, 2725, 2726, 2727, 2728, 2729, 2730, 2731, 2732, 2733,
       2734, 2735, 2736, 2737, 2738, 2739, 2740, 2741, 2742, 2743, 2744,
       2745, 2746, 2747, 2748, 2749, 2750, 2751, 2752, 2753, 2754, 2755,
       2756, 2757, 2758, 2759, 2760, 2761, 2762, 2763, 2764, 2765, 2766,
       2767, 2768, 2769, 2770, 2771, 2772, 2773, 2774, 2775, 2776, 2777,
       2778, 2779, 2780, 2781, 2782, 2783, 2784, 2785, 2786, 2787, 2788,
       2789, 2790, 2791, 2792, 2793, 2794, 2795, 2796, 2797, 2798, 2799,
       2800, 2801, 2802, 2803, 2804, 2805, 2806, 2807, 2808, 2809, 2810,
       2811, 2812, 2813, 2814, 2815, 2816, 2817, 2818, 2819, 2820, 2821,
       2822, 2823, 2824, 2825, 2826, 2827, 2828, 2829, 2830, 2831, 2832,
       2833, 2834, 2835, 2836, 2837, 2838, 2839, 2840, 2841, 2842, 2843,
       2844, 2845, 2846, 2847, 2848, 2849, 2850, 2851, 2852, 2853, 2854,
       2855, 2856, 2857, 2858, 2859, 2860, 2861, 2862, 2863, 2864, 2865,
       2866, 2867, 2868, 2869, 2870, 2871, 2872, 2873, 2874, 2875, 2876,
       2877, 2878, 2879, 2880, 2881, 2882, 2883, 2884, 2885, 2886, 2887,
       2888, 2889, 2890, 2891, 2892, 2893, 2894, 2895, 2896, 2897, 2898,
       2899, 2900, 2901, 2902, 2903, 2904, 2905, 2906, 2907, 2908, 2909,
       2910, 2911, 2912, 2913, 2914, 2915, 2916, 2917, 2918, 2919, 2920,
       2921, 2922, 2923, 2924, 2925, 2926, 2927, 2928, 2929, 2930, 2931,
       2932, 2933, 2934, 2935, 2936, 2937, 2938, 2939, 2940, 2941, 2942,
       2943, 2944, 2945, 2946, 2947, 2948, 2949, 2950, 2951, 2952, 2953,
       2954, 2955, 2956, 2957, 2958, 2959, 2960, 2961, 2962, 2963, 2964,
       2965, 2966, 2967, 2968, 2969, 2970, 2971, 2972, 2973, 2974, 2975,
       2976, 2977, 2978, 2979, 2980, 2981, 2982, 2983, 2984, 2985, 2986,
       2987, 2988, 2989, 2990, 2991, 2992, 2993, 2994, 2995, 2996, 2997,
       2998, 2999, 3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008,
       3009, 3010, 3011, 3012, 3013, 3014, 3015, 3016, 3017, 3018, 3019,
       3020, 3021, 3022, 3023, 3024, 3025, 3026, 3027, 3028, 3029, 3030,
       3031, 3032, 3033, 3034, 3035, 3036, 3037, 3038, 3039, 3040, 3041,
       3042, 3043, 3044, 3045, 3046, 3047, 3048, 3049, 3050, 3051, 3052,
       3053, 3054, 3055, 3056, 3057, 3058, 3059, 3060, 3061, 3062, 3063,
       3064, 3065, 3066, 3067, 3068, 3069, 3070, 3071, 3072, 3073, 3074,
       3075, 3076, 3077, 3078, 3079, 3080, 3081, 3082, 3083, 3084, 3085,
       3086, 3087, 3088, 3089, 3090, 3091, 3092, 3093, 3094]),)

绘制异常

我们现在知道哪些数据样本是异常的。有了这些,我们将从原始测试数据中找到相应的 timestamps(时间戳)。我们将使用以下方法来实现这一点

假设 time_steps = 3,我们有 10 个训练值。我们的 x_train 将如下所示

  • 0, 1, 2
  • 1, 2, 3
  • 2, 3, 4
  • 3, 4, 5
  • 4, 5, 6
  • 5, 6, 7
  • 6, 7, 8
  • 7, 8, 9

除了初始和最终的 time_steps-1 个数据值外,所有其他值都将出现在 time_steps 个样本中。因此,如果我们知道样本 [(3, 4, 5), (4, 5, 6), (5, 6, 7)] 是异常的,我们可以说数据点 5 是异常的。

# data i is an anomaly if samples [(i - timesteps + 1) to (i)] are anomalies
anomalous_data_indices = []
for data_idx in range(TIME_STEPS - 1, len(df_test_value) - TIME_STEPS + 1):
    if np.all(anomalies[data_idx - TIME_STEPS + 1 : data_idx]):
        anomalous_data_indices.append(data_idx)

让我们将异常叠加在原始测试数据图上。

df_subset = df_daily_jumpsup.iloc[anomalous_data_indices]
fig, ax = plt.subplots()
df_daily_jumpsup.plot(legend=False, ax=ax)
df_subset.plot(legend=False, ax=ax, color="r")
plt.show()

png