代码示例 / 时间序列 / 使用图神经网络和LSTM进行交通流量预测

使用图神经网络和LSTM进行交通流量预测

作者: Arash Khodadadi
创建日期 2021/12/28
上次修改 2023/11/22
描述:此示例演示如何在图上进行时间序列预测。

ⓘ 此示例使用 Keras 3

在Colab中查看 GitHub 源码


引言

此示例展示了如何使用图神经网络和LSTM预测交通状况。具体来说,我们感兴趣的是在给定道路段集合的历史交通速度的情况下,预测未来交通速度的值。

解决此问题的一种常用方法是将每个道路段的交通速度视为一个单独的时间序列,并使用同一时间序列的过去值预测每个时间序列的未来值。

但是,此方法忽略了一个道路段的交通速度对其相邻路段的依赖性。为了能够考虑大量相邻道路上交通速度之间的复杂交互,我们可以将交通网络定义为一个图,并将交通速度视为该图上的信号。在本例中,我们实现了一种神经网络架构,该架构可以处理图上的时间序列数据。我们首先展示如何处理数据并为图上的预测创建tf.data.Dataset。然后,我们实现一个模型,该模型使用图卷积和LSTM层在图上执行预测。

数据处理和模型架构受以下论文启发

Yu, Bing, Haoteng Yin, and Zhanxing Zhu. "时空图卷积网络:一种用于交通预测的深度学习框架。" 第27届国际人工智能联合会议论文集,2018年。(github)


设置

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import pandas as pd
import numpy as np
import typing
import matplotlib.pyplot as plt

import tensorflow as tf
import keras
from keras import layers
from keras import ops

数据准备

数据描述

我们使用一个名为PeMSD7的真实世界交通速度数据集。我们使用由Yu 等人,2018收集和准备的版本,并可在此处获得

数据包含两个文件

  • PeMSD7_W_228.csv包含加利福尼亚州第7区228个站点之间的距离。
  • PeMSD7_V_228.csv包含2012年5月和6月工作日内这些站点收集的交通速度。

数据集的完整描述可以在Yu 等人,2018中找到。

加载数据

url = "https://github.com/VeritasYin/STGCN_IJCAI-18/raw/master/dataset/PeMSD7_Full.zip"
data_dir = keras.utils.get_file(origin=url, extract=True, archive_format="zip")
data_dir = data_dir.rstrip("PeMSD7_Full.zip")

route_distances = pd.read_csv(
    os.path.join(data_dir, "PeMSD7_W_228.csv"), header=None
).to_numpy()
speeds_array = pd.read_csv(
    os.path.join(data_dir, "PeMSD7_V_228.csv"), header=None
).to_numpy()

print(f"route_distances shape={route_distances.shape}")
print(f"speeds_array shape={speeds_array.shape}")
route_distances shape=(228, 228)
speeds_array shape=(12672, 228)

道路子采样

为了减少问题规模并加快训练速度,我们只使用数据集中228条道路中的26条道路的样本。我们通过从道路0开始,选择其5个最近的道路,并继续此过程直到获得25条道路来选择道路。您可以选择道路的任何其他子集。我们以这种方式选择道路是为了增加拥有相关速度时间序列的道路的可能性。sample_routes包含所选道路的ID。

sample_routes = [
    0,
    1,
    4,
    7,
    8,
    11,
    15,
    108,
    109,
    114,
    115,
    118,
    120,
    123,
    124,
    126,
    127,
    129,
    130,
    132,
    133,
    136,
    139,
    144,
    147,
    216,
]
route_distances = route_distances[np.ix_(sample_routes, sample_routes)]
speeds_array = speeds_array[:, sample_routes]

print(f"route_distances shape={route_distances.shape}")
print(f"speeds_array shape={speeds_array.shape}")
route_distances shape=(26, 26)
speeds_array shape=(12672, 26)

数据可视化

以下是两条路线的交通速度时间序列

plt.figure(figsize=(18, 6))
plt.plot(speeds_array[:, [0, -1]])
plt.legend(["route_0", "route_25"])
<matplotlib.legend.Legend at 0x7f5a870b2050>

png

我们还可以可视化不同路线中时间序列之间的相关性。

plt.figure(figsize=(8, 8))
plt.matshow(np.corrcoef(speeds_array.T), 0)
plt.xlabel("road number")
plt.ylabel("road number")
Text(0, 0.5, 'road number')

png

使用此相关性热图,我们可以看到例如路线4、5、6的速度高度相关。

数据分割和归一化

接下来,我们将速度值数组分成训练/验证/测试集,并对结果数组进行归一化

train_size, val_size = 0.5, 0.2


def preprocess(data_array: np.ndarray, train_size: float, val_size: float):
    """Splits data into train/val/test sets and normalizes the data.

    Args:
        data_array: ndarray of shape `(num_time_steps, num_routes)`
        train_size: A float value between 0.0 and 1.0 that represent the proportion of the dataset
            to include in the train split.
        val_size: A float value between 0.0 and 1.0 that represent the proportion of the dataset
            to include in the validation split.

    Returns:
        `train_array`, `val_array`, `test_array`
    """

    num_time_steps = data_array.shape[0]
    num_train, num_val = (
        int(num_time_steps * train_size),
        int(num_time_steps * val_size),
    )
    train_array = data_array[:num_train]
    mean, std = train_array.mean(axis=0), train_array.std(axis=0)

    train_array = (train_array - mean) / std
    val_array = (data_array[num_train : (num_train + num_val)] - mean) / std
    test_array = (data_array[(num_train + num_val) :] - mean) / std

    return train_array, val_array, test_array


train_array, val_array, test_array = preprocess(speeds_array, train_size, val_size)

print(f"train set size: {train_array.shape}")
print(f"validation set size: {val_array.shape}")
print(f"test set size: {test_array.shape}")
train set size: (6336, 26)
validation set size: (2534, 26)
test set size: (3802, 26)

创建TensorFlow数据集

接下来,我们为我们的预测问题创建数据集。预测问题可以表述如下:给定时间t+1, t+2, ..., t+T时道路速度值序列,我们希望预测时间t+T+1, ..., t+T+h时道路速度的未来值。因此,对于每个时间t,我们模型的输入是T个大小为N的向量,目标是h个大小为N的向量,其中N是道路的数量。

我们使用Keras内置函数keras.utils.timeseries_dataset_from_array。下面的函数create_tf_dataset()numpy.ndarray作为输入,并返回一个tf.data.Dataset。在此函数中,input_sequence_length=Tforecast_horizon=h

参数multi_horizon需要更多解释。假设forecast_horizon=3。如果multi_horizon=True,则模型将对时间步长t+T+1, t+T+2, t+T+3进行预测。因此,目标将具有形状(T,3)。但是,如果multi_horizon=False,则模型将仅对时间步长t+T+3进行预测,因此目标将具有形状(T, 1)

您可能会注意到,每个批次中的输入张量具有形状(batch_size, input_sequence_length, num_routes, 1)。添加最后一个维度是为了使模型更通用:在每个时间步长,每条道路的输入特征可能包含多个时间序列。例如,人们可能希望使用温度时间序列以及速度的历史值作为输入特征。但是,在本例中,输入的最后一个维度始终为1。

我们使用每条道路速度的最后12个值来预测未来3个时间步长的速度

batch_size = 64
input_sequence_length = 12
forecast_horizon = 3
multi_horizon = False


def create_tf_dataset(
    data_array: np.ndarray,
    input_sequence_length: int,
    forecast_horizon: int,
    batch_size: int = 128,
    shuffle=True,
    multi_horizon=True,
):
    """Creates tensorflow dataset from numpy array.

    This function creates a dataset where each element is a tuple `(inputs, targets)`.
    `inputs` is a Tensor
    of shape `(batch_size, input_sequence_length, num_routes, 1)` containing
    the `input_sequence_length` past values of the timeseries for each node.
    `targets` is a Tensor of shape `(batch_size, forecast_horizon, num_routes)`
    containing the `forecast_horizon`
    future values of the timeseries for each node.

    Args:
        data_array: np.ndarray with shape `(num_time_steps, num_routes)`
        input_sequence_length: Length of the input sequence (in number of timesteps).
        forecast_horizon: If `multi_horizon=True`, the target will be the values of the timeseries for 1 to
            `forecast_horizon` timesteps ahead. If `multi_horizon=False`, the target will be the value of the
            timeseries `forecast_horizon` steps ahead (only one value).
        batch_size: Number of timeseries samples in each batch.
        shuffle: Whether to shuffle output samples, or instead draw them in chronological order.
        multi_horizon: See `forecast_horizon`.

    Returns:
        A tf.data.Dataset instance.
    """

    inputs = keras.utils.timeseries_dataset_from_array(
        np.expand_dims(data_array[:-forecast_horizon], axis=-1),
        None,
        sequence_length=input_sequence_length,
        shuffle=False,
        batch_size=batch_size,
    )

    target_offset = (
        input_sequence_length
        if multi_horizon
        else input_sequence_length + forecast_horizon - 1
    )
    target_seq_length = forecast_horizon if multi_horizon else 1
    targets = keras.utils.timeseries_dataset_from_array(
        data_array[target_offset:],
        None,
        sequence_length=target_seq_length,
        shuffle=False,
        batch_size=batch_size,
    )

    dataset = tf.data.Dataset.zip((inputs, targets))
    if shuffle:
        dataset = dataset.shuffle(100)

    return dataset.prefetch(16).cache()


train_dataset, val_dataset = (
    create_tf_dataset(data_array, input_sequence_length, forecast_horizon, batch_size)
    for data_array in [train_array, val_array]
)

test_dataset = create_tf_dataset(
    test_array,
    input_sequence_length,
    forecast_horizon,
    batch_size=test_array.shape[0],
    shuffle=False,
    multi_horizon=multi_horizon,
)

道路图

如前所述,我们假设道路段形成一个图。PeMSD7数据集包含道路段距离。下一步是从这些距离创建图邻接矩阵。根据Yu 等人,2018(公式10),我们假设如果对应道路之间的距离小于阈值,则图中两个节点之间存在边。

def compute_adjacency_matrix(
    route_distances: np.ndarray, sigma2: float, epsilon: float
):
    """Computes the adjacency matrix from distances matrix.

    It uses the formula in https://github.com/VeritasYin/STGCN_IJCAI-18#data-preprocessing to
    compute an adjacency matrix from the distance matrix.
    The implementation follows that paper.

    Args:
        route_distances: np.ndarray of shape `(num_routes, num_routes)`. Entry `i,j` of this array is the
            distance between roads `i,j`.
        sigma2: Determines the width of the Gaussian kernel applied to the square distances matrix.
        epsilon: A threshold specifying if there is an edge between two nodes. Specifically, `A[i,j]=1`
            if `np.exp(-w2[i,j] / sigma2) >= epsilon` and `A[i,j]=0` otherwise, where `A` is the adjacency
            matrix and `w2=route_distances * route_distances`

    Returns:
        A boolean graph adjacency matrix.
    """
    num_routes = route_distances.shape[0]
    route_distances = route_distances / 10000.0
    w2, w_mask = (
        route_distances * route_distances,
        np.ones([num_routes, num_routes]) - np.identity(num_routes),
    )
    return (np.exp(-w2 / sigma2) >= epsilon) * w_mask

函数compute_adjacency_matrix()返回一个布尔邻接矩阵,其中1表示两个节点之间存在边。我们使用以下类来存储有关图的信息。

class GraphInfo:
    def __init__(self, edges: typing.Tuple[list, list], num_nodes: int):
        self.edges = edges
        self.num_nodes = num_nodes


sigma2 = 0.1
epsilon = 0.5
adjacency_matrix = compute_adjacency_matrix(route_distances, sigma2, epsilon)
node_indices, neighbor_indices = np.where(adjacency_matrix == 1)
graph = GraphInfo(
    edges=(node_indices.tolist(), neighbor_indices.tolist()),
    num_nodes=adjacency_matrix.shape[0],
)
print(f"number of nodes: {graph.num_nodes}, number of edges: {len(graph.edges[0])}")
number of nodes: 26, number of edges: 150

网络架构

我们用于图上预测的模型由图卷积层和LSTM层组成。

图卷积层

我们对图卷积层的实现类似于此Keras示例中的实现。请注意,在该示例中,层的输入是一个形状为(num_nodes,in_feat)的2D张量,但在我们的示例中,层的输入是一个形状为(num_nodes, batch_size, input_seq_length, in_feat)的4D张量。图卷积层执行以下步骤

  • 节点的表示在self.compute_nodes_representation()中通过将输入特征乘以self.weight来计算
  • 聚合的邻居消息在self.compute_aggregated_messages()中通过首先聚合邻居的表示,然后将结果乘以self.weight来计算
  • 层的最终输出在self.update()中通过组合节点表示和邻居的聚合消息来计算
class GraphConv(layers.Layer):
    def __init__(
        self,
        in_feat,
        out_feat,
        graph_info: GraphInfo,
        aggregation_type="mean",
        combination_type="concat",
        activation: typing.Optional[str] = None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.graph_info = graph_info
        self.aggregation_type = aggregation_type
        self.combination_type = combination_type
        self.weight = self.add_weight(
            initializer=keras.initializers.GlorotUniform(),
            shape=(in_feat, out_feat),
            dtype="float32",
            trainable=True,
        )
        self.activation = layers.Activation(activation)

    def aggregate(self, neighbour_representations):
        aggregation_func = {
            "sum": tf.math.unsorted_segment_sum,
            "mean": tf.math.unsorted_segment_mean,
            "max": tf.math.unsorted_segment_max,
        }.get(self.aggregation_type)

        if aggregation_func:
            return aggregation_func(
                neighbour_representations,
                self.graph_info.edges[0],
                num_segments=self.graph_info.num_nodes,
            )

        raise ValueError(f"Invalid aggregation type: {self.aggregation_type}")

    def compute_nodes_representation(self, features):
        """Computes each node's representation.

        The nodes' representations are obtained by multiplying the features tensor with
        `self.weight`. Note that
        `self.weight` has shape `(in_feat, out_feat)`.

        Args:
            features: Tensor of shape `(num_nodes, batch_size, input_seq_len, in_feat)`

        Returns:
            A tensor of shape `(num_nodes, batch_size, input_seq_len, out_feat)`
        """
        return ops.matmul(features, self.weight)

    def compute_aggregated_messages(self, features):
        neighbour_representations = tf.gather(features, self.graph_info.edges[1])
        aggregated_messages = self.aggregate(neighbour_representations)
        return ops.matmul(aggregated_messages, self.weight)

    def update(self, nodes_representation, aggregated_messages):
        if self.combination_type == "concat":
            h = ops.concatenate([nodes_representation, aggregated_messages], axis=-1)
        elif self.combination_type == "add":
            h = nodes_representation + aggregated_messages
        else:
            raise ValueError(f"Invalid combination type: {self.combination_type}.")
        return self.activation(h)

    def call(self, features):
        """Forward pass.

        Args:
            features: tensor of shape `(num_nodes, batch_size, input_seq_len, in_feat)`

        Returns:
            A tensor of shape `(num_nodes, batch_size, input_seq_len, out_feat)`
        """
        nodes_representation = self.compute_nodes_representation(features)
        aggregated_messages = self.compute_aggregated_messages(features)
        return self.update(nodes_representation, aggregated_messages)

LSTM 加上图卷积

通过将图卷积层应用于输入张量,我们得到另一个包含节点随时间推移的表示的张量(另一个4D张量)。对于每个时间步长,节点的表示都由其邻居的信息告知。

但是,为了做出良好的预测,我们不仅需要邻居的信息,还需要及时处理信息。为此,我们可以将每个节点的张量传递给一个循环层。下面的LSTMGC层首先将图卷积层应用于输入,然后将结果传递给LSTM层。

class LSTMGC(layers.Layer):
    """Layer comprising a convolution layer followed by LSTM and dense layers."""

    def __init__(
        self,
        in_feat,
        out_feat,
        lstm_units: int,
        input_seq_len: int,
        output_seq_len: int,
        graph_info: GraphInfo,
        graph_conv_params: typing.Optional[dict] = None,
        **kwargs,
    ):
        super().__init__(**kwargs)

        # graph conv layer
        if graph_conv_params is None:
            graph_conv_params = {
                "aggregation_type": "mean",
                "combination_type": "concat",
                "activation": None,
            }
        self.graph_conv = GraphConv(in_feat, out_feat, graph_info, **graph_conv_params)

        self.lstm = layers.LSTM(lstm_units, activation="relu")
        self.dense = layers.Dense(output_seq_len)

        self.input_seq_len, self.output_seq_len = input_seq_len, output_seq_len

    def call(self, inputs):
        """Forward pass.

        Args:
            inputs: tensor of shape `(batch_size, input_seq_len, num_nodes, in_feat)`

        Returns:
            A tensor of shape `(batch_size, output_seq_len, num_nodes)`.
        """

        # convert shape to  (num_nodes, batch_size, input_seq_len, in_feat)
        inputs = ops.transpose(inputs, [2, 0, 1, 3])

        gcn_out = self.graph_conv(
            inputs
        )  # gcn_out has shape: (num_nodes, batch_size, input_seq_len, out_feat)
        shape = ops.shape(gcn_out)
        num_nodes, batch_size, input_seq_len, out_feat = (
            shape[0],
            shape[1],
            shape[2],
            shape[3],
        )

        # LSTM takes only 3D tensors as input
        gcn_out = ops.reshape(
            gcn_out, (batch_size * num_nodes, input_seq_len, out_feat)
        )
        lstm_out = self.lstm(
            gcn_out
        )  # lstm_out has shape: (batch_size * num_nodes, lstm_units)

        dense_output = self.dense(
            lstm_out
        )  # dense_output has shape: (batch_size * num_nodes, output_seq_len)
        output = ops.reshape(dense_output, (num_nodes, batch_size, self.output_seq_len))
        return ops.transpose(
            output, [1, 2, 0]
        )  # returns Tensor of shape (batch_size, output_seq_len, num_nodes)

模型训练

in_feat = 1
batch_size = 64
epochs = 20
input_sequence_length = 12
forecast_horizon = 3
multi_horizon = False
out_feat = 10
lstm_units = 64
graph_conv_params = {
    "aggregation_type": "mean",
    "combination_type": "concat",
    "activation": None,
}

st_gcn = LSTMGC(
    in_feat,
    out_feat,
    lstm_units,
    input_sequence_length,
    forecast_horizon,
    graph,
    graph_conv_params,
)
inputs = layers.Input((input_sequence_length, graph.num_nodes, in_feat))
outputs = st_gcn(inputs)

model = keras.models.Model(inputs, outputs)
model.compile(
    optimizer=keras.optimizers.RMSprop(learning_rate=0.0002),
    loss=keras.losses.MeanSquaredError(),
)
model.fit(
    train_dataset,
    validation_data=val_dataset,
    epochs=epochs,
    callbacks=[keras.callbacks.EarlyStopping(patience=10)],
)
Epoch 1/20
  1/99 ━━━━━━━━━━━━━━━━━━━━  5:16 3s/step - loss: 1.0735

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1700705896.341813 3354152 device_compiler.h:186] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.
W0000 00:00:1700705896.362213 3354152 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update
W0000 00:00:1700705896.363019 3354152 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update

 44/99 ━━━━━━━━━━━━━━━━━━━━  1s 32ms/step - loss: 0.7919

W0000 00:00:1700705897.577991 3354154 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update
W0000 00:00:1700705897.578802 3354154 graph_launch.cc:671] Fallback to op-by-op mode because memset node breaks graph update

 99/99 ━━━━━━━━━━━━━━━━━━━━ 7s 36ms/step - loss: 0.7470 - val_loss: 0.3568
Epoch 2/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.2785 - val_loss: 0.1845
Epoch 3/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.1734 - val_loss: 0.1250
Epoch 4/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.1313 - val_loss: 0.1084
Epoch 5/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.1095 - val_loss: 0.0994
Epoch 6/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0960 - val_loss: 0.0930
Epoch 7/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0896 - val_loss: 0.0954
Epoch 8/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0862 - val_loss: 0.0920
Epoch 9/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - loss: 0.0841 - val_loss: 0.0898
Epoch 10/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - loss: 0.0827 - val_loss: 0.0884
Epoch 11/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - loss: 0.0817 - val_loss: 0.0865
Epoch 12/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0809 - val_loss: 0.0843
Epoch 13/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0803 - val_loss: 0.0828
Epoch 14/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0798 - val_loss: 0.0814
Epoch 15/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0794 - val_loss: 0.0802
Epoch 16/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0790 - val_loss: 0.0794
Epoch 17/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0787 - val_loss: 0.0786
Epoch 18/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0785 - val_loss: 0.0780
Epoch 19/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0782 - val_loss: 0.0776
Epoch 20/20
 99/99 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0780 - val_loss: 0.0776

<keras.src.callbacks.history.History at 0x7f59b8152560>

在测试集上进行预测

现在我们可以使用训练好的模型对测试集进行预测。下面,我们计算模型的MAE,并将其与朴素预测的MAE进行比较。朴素预测是每个节点速度的最后一个值。

x_test, y = next(test_dataset.as_numpy_iterator())
y_pred = model.predict(x_test)
plt.figure(figsize=(18, 6))
plt.plot(y[:, 0, 0])
plt.plot(y_pred[:, 0, 0])
plt.legend(["actual", "forecast"])

naive_mse, model_mse = (
    np.square(x_test[:, -1, :, 0] - y[:, 0, :]).mean(),
    np.square(y_pred[:, 0, :] - y[:, 0, :]).mean(),
)
print(f"naive MAE: {naive_mse}, model MAE: {model_mse}")
 119/119 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step
naive MAE: 0.13472308593195767, model MAE: 0.13524348477186485

png

当然,这里的目标是演示该方法,而不是实现最佳性能。为了提高模型的准确性,应仔细调整所有模型超参数。此外,可以堆叠多个LSTMGC块来增加模型的表示能力。