RobertaTextClassifierPreprocessor
类keras_hub.models.RobertaTextClassifierPreprocessor(
tokenizer, sequence_length=512, truncate="round_robin", **kwargs
)
一个 RoBERTa 预处理层,用于分词和打包输入。
此预处理层将执行三件事
tokenizer
对任意数量的输入段进行分词。"<s>"
、"</s>"
和 "<pad>"
token 将输入打包在一起,即,在整个序列的开头添加一个 "<s>"
,在每个段的末尾添加 "</s></s>"
(最后一个除外),并在整个序列的末尾添加一个 "</s>"
。"token_ids"
、"padding_mask"
的字典,可以将其直接传递给 RoBERTa 模型。此层可以直接与 tf.data.Dataset.map
一起使用,以预处理 keras.Model.fit
使用的 (x, y, sample_weight)
格式的字符串数据。
参数
keras_hub.models.RobertaTokenizer
实例。sequence_length
的算法。该值可以是 round_robin
或 waterfall
"round_robin"
:可用的空间以循环的方式一次分配一个 token 给仍然需要一些空间的输入,直到达到限制。"waterfall"
:预算的分配使用“瀑布”算法完成,该算法以从左到右的方式分配配额,并填满存储桶,直到预算用完。它支持任意数量的段。调用参数
示例
直接在数据上调用该层。
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"roberta_base_en"
)
# Tokenize and pack a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize a batch of single sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Preprocess a batch of sentence pairs.
# When handling multiple sequences, always convert to tensors first!
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
preprocessor((first, second))
# Custom vocabulary.
vocab = {"<s>": 0, "<pad>": 1, "</s>": 2, "<mask>": 3}
vocab = {**vocab, "a": 4, "Ġquick": 5, "Ġfox": 6}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick", "Ġ f", "o x", "Ġf ox"]
tokenizer = keras_hub.models.RobertaTokenizer(
vocabulary=vocab,
merges=merges
)
preprocessor = keras_hub.models.RobertaTextClassifierPreprocessor(tokenizer)
preprocessor("a quick fox")
使用 tf.data.Dataset
进行映射。
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"roberta_base_en"
)
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
label = tf.constant([1, 1])
# Map labeled single sentences.
ds = tf.data.Dataset.from_tensor_slices((first, label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled single sentences.
ds = tf.data.Dataset.from_tensor_slices(first)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map labeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices((first, second))
# Watch out for tf.data's default unpacking of tuples here!
# Best to invoke the `preprocessor` directly in this case.
ds = ds.map(
lambda first, second: preprocessor(x=(first, second)),
num_parallel_calls=tf.data.AUTOTUNE,
)
from_preset
方法RobertaTextClassifierPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
从模型预设实例化 keras_hub.models.Preprocessor
。
预设是用于保存和加载预训练模型的配置、权重和其他文件资产的目录。preset
可以作为以下之一传递:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Preprocessor
子类,您可以运行 cls.presets.keys()
以列出该类上所有可用的内置预设。
由于给定模型通常有多个预处理类,因此此方法应在特定子类上调用,例如 keras_hub.models.BertTextClassifierPreprocessor.from_preset()
。
参数
示例
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.BertTextClassifierPreprocessor.from_preset(
"bert_base_en",
)
预设名称 | 参数 | 描述 |
---|---|---|
roberta_base_en | 124.05M | 12 层 RoBERTa 模型,保留大小写。在英文维基百科、BooksCorpus、CommonCraw 和 OpenWebText 上训练。 |
roberta_large_en | 354.31M | 24 层 RoBERTa 模型,保留大小写。在英文维基百科、BooksCorpus、CommonCraw 和 OpenWebText 上训练。 |
xlm_roberta_base_multi | 277.45M | 12 层 XLM-RoBERTa 模型,保留大小写。在 100 种语言的 CommonCrawl 上训练。 |
xlm_roberta_large_multi | 558.84M | 24 层 XLM-RoBERTa 模型,保留大小写。在 100 种语言的 CommonCrawl 上训练。 |
tokenizer
属性keras_hub.models.RobertaTextClassifierPreprocessor.tokenizer
用于分词字符串的分词器。