Adafactor 类keras.optimizers.Adafactor(
learning_rate=0.001,
beta_2_decay=-0.8,
epsilon_1=1e-30,
epsilon_2=0.001,
clip_threshold=1.0,
relative_step=True,
weight_decay=None,
clipnorm=None,
clipvalue=None,
global_clipnorm=None,
use_ema=False,
ema_momentum=0.99,
ema_overwrite_frequency=None,
loss_scale_factor=None,
gradient_accumulation_steps=None,
name="adafactor",
**kwargs
)
实现了 Adafactor 算法的优化器。
Adafactor 常用于 NLP 任务,其优点是内存占用更少,因为它只保存了先前梯度的一部分信息。
默认参数设置基于原始论文(参见参考文献)。当梯度的维度大于 2 时,Adafactor 优化器会在其累加器变量中分别删除最后两个维度。
参数
keras.optimizers.schedules.LearningRateSchedule 实例,或一个不带参数并返回实际使用值的可调用对象。学习率。默认为 0.001。beta_2 的衰减率。clipnorm、clipvalue 和 global_clipnorm。True。如果 learning_rate 是一个常量且 relative_step=True,则学习率将根据当前迭代次数进行调整。这是 Adafactor 中的默认学习率衰减。False。如果为 True,则应用指数移动平均 (EMA)。EMA 包括在模型权重(随着训练批次更新)上计算权重的指数移动平均,并定期用其移动平均值覆盖权重。use_ema=True 时使用。这是在计算模型权重 EMA 时使用的动量:new_average = ema_momentum * old_average + (1 - ema_momentum) * current_variable_value。use_ema=True 时使用。每进行 ema_overwrite_frequency 步迭代,我们就用其移动平均值覆盖模型变量。如果为 None,优化器不会在训练中间覆盖模型变量,您需要通过调用 optimizer.finalize_variable_values()(该函数会就地更新模型变量)来显式覆盖变量。使用内置的 fit() 训练循环时,这会在最后一个 epoch 之后自动完成,您无需执行任何操作。None。如果是浮点数,将用该缩放因子乘以损失值,然后再计算梯度,并将梯度的逆乘以缩放因子,然后再更新变量。有助于防止混合精度训练期间的下溢。或者,keras.optimizers.LossScaleOptimizer 会自动设置损失缩放因子。None。如果为整数,模型和优化器变量将不会在每一步更新;而是每 gradient_accumulation_steps 步更新一次,使用自上次更新以来的平均梯度值。这被称为“梯度累积”。当您的批次大小非常小时,这可能很有用,目的是减少每次更新步骤中的梯度噪声。EMA 频率将查看“累积”的迭代次数(optimizer steps // gradient_accumulation_steps)。学习率调度器将查看“实际”的迭代次数(optimizer steps)。参考