affine_transform 函数keras.ops.image.affine_transform(
images,
transform,
interpolation="bilinear",
fill_mode="constant",
fill_value=0,
data_format=None,
)
对图像应用给定的变换。
参数
[a0, a1, a2, b0, b1, b2, c0, c1],则它将输出点(x, y)映射到变换后的输入点(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k),其中k = c0 x + c1 y + 1。该变换与映射输入点到输出点的变换相反。请注意,梯度不会反向传播到变换参数中。请注意,c0和c1仅在使用TensorFlow后端时有效,而在使用其他后端时将被视为0。"nearest"和"bilinear"。默认为"bilinear"。"constant"、"nearest"、"wrap"和"reflect"。默认为"constant"。"reflect": `(d c b a | a b c d | d c b a)` 输入通过围绕最后一个像素的边缘进行反射来扩展。"constant": `(k k k k | a b c d | k k k k)` 输入通过用 `fill_value` 指定的相同常量值 k 填充边缘以外的所有值来扩展。"wrap": `(a b c d | a b c d | a b c d)` 输入通过环绕到相对边缘进行扩展。"nearest": (a a a a | a b c d | d d d d) 输入通过最近的像素进行扩展。fill_mode="constant"时,用于输入边界之外的点的数值。默认为0。"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
应用仿射变换后的图像或图像批次。
示例
>>> x = np.random.random((2, 64, 80, 3)) # batch of 2 RGB images
>>> transform = np.array(
... [
... [1.5, 0, -20, 0, 1.5, -16, 0, 0], # zoom
... [1, 0, -20, 0, 1, -16, 0, 0], # translation
... ]
... )
>>> y = keras.ops.image.affine_transform(x, transform)
>>> y.shape
(2, 64, 80, 3)
>>> x = np.random.random((64, 80, 3)) # single RGB image
>>> transform = np.array([1.0, 0.5, -20, 0.5, 1.0, -16, 0, 0]) # shear
>>> y = keras.ops.image.affine_transform(x, transform)
>>> y.shape
(64, 80, 3)
>>> x = np.random.random((2, 3, 64, 80)) # batch of 2 RGB images
>>> transform = np.array(
... [
... [1.5, 0, -20, 0, 1.5, -16, 0, 0], # zoom
... [1, 0, -20, 0, 1, -16, 0, 0], # translation
... ]
... )
>>> y = keras.ops.image.affine_transform(x, transform,
... data_format="channels_first")
>>> y.shape
(2, 3, 64, 80)
crop_images 函数keras.ops.image.crop_images(
images,
top_cropping=None,
left_cropping=None,
bottom_cropping=None,
right_cropping=None,
target_height=None,
target_width=None,
data_format=None,
)
将images裁剪到指定的height和width。
参数
"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
裁剪后的图像或图像批次。
示例
>>> images = np.reshape(np.arange(1, 28, dtype="float32"), [3, 3, 3])
>>> images[:,:,0] # print the first channel of the images
array([[ 1., 4., 7.],
[10., 13., 16.],
[19., 22., 25.]], dtype=float32)
>>> cropped_images = keras.image.crop_images(images, 0, 0, 2, 2)
>>> cropped_images[:,:,0] # print the first channel of the cropped images
array([[ 1., 4.],
[10., 13.]], dtype=float32)
extract_patches 函数keras.ops.image.extract_patches(
images, size, strides=None, dilation_rate=1, padding="valid", data_format=None
)
从图像中提取图像块。
参数
None,则默认为与size相同的值。strides > 1不支持与dilation_rate > 1结合使用"same"或"valid"。"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
提取的图像块,3D(如果未批量处理)或4D(如果批量处理)。
示例
>>> image = np.random.random(
... (2, 20, 20, 3)
... ).astype("float32") # batch of 2 RGB images
>>> patches = keras.ops.image.extract_patches(image, (5, 5))
>>> patches.shape
(2, 4, 4, 75)
>>> image = np.random.random((20, 20, 3)).astype("float32") # 1 RGB image
>>> patches = keras.ops.image.extract_patches(image, (3, 3), (1, 1))
>>> patches.shape
(18, 18, 27)
gaussian_blur 函数keras.ops.image.gaussian_blur(
images, kernel_size=(3, 3), sigma=(1.0, 1.0), data_format=None
)
对图像应用高斯模糊。
参数
"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
模糊后的图像或图像批次。
示例
>>> x = np.random.random((2, 64, 80, 3)) # batch of 2 RGB images
>>> y = keras.ops.image.gaussian_blur(x)
>>> y.shape
(2, 64, 80, 3)
>>> x = np.random.random((64, 80, 3)) # single RGB image
>>> y = keras.ops.image.gaussian_blur(x)
>>> y.shape
(64, 80, 3)
>>> x = np.random.random((2, 3, 64, 80)) # batch of 2 RGB images
>>> y = keras.ops.image.gaussian_blur(
... x, data_format="channels_first")
>>> y.shape
(2, 3, 64, 80)
hsv_to_rgb 函数keras.ops.image.hsv_to_rgb(images, data_format=None)
将HSV图像转换为RGB。
images 必须是浮点类型,并且只有当images中的值在[0, 1]范围内时,输出才有明确定义。
参数
"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
RGB图像或RGB图像批次。
示例
>>> import numpy as np
>>> from keras import ops
>>> x = np.random.random((2, 4, 4, 3))
>>> y = ops.image.hsv_to_rgb(x)
>>> y.shape
(2, 4, 4, 3)
>>> x = np.random.random((4, 4, 3)) # Single HSV image
>>> y = ops.image.hsv_to_rgb(x)
>>> y.shape
(4, 4, 3)
>>> x = np.random.random((2, 3, 4, 4))
>>> y = ops.image.hsv_to_rgb(x, data_format="channels_first")
>>> y.shape
(2, 3, 4, 4)
map_coordinates 函数keras.ops.image.map_coordinates(
inputs, coordinates, order, fill_mode="constant", fill_value=0
)
通过插值将输入数组映射到新坐标。
请注意,边界附近的插值与scipy函数不同,因为我们修复了一个已知的bug scipy/issues/2640。
参数
inputs时的坐标。0或1。0表示最近邻插值,1表示线性插值。"constant"、"nearest"、"wrap"、"mirror"和"reflect"。默认为"constant"。"constant": (k k k k | a b c d | k k k k) 输入通过用fill_value指定的相同常量值k填充所有边界外的区域来扩展。"nearest": (a a a a | a b c d | d d d d) 输入通过最近的像素进行扩展。"wrap": (a b c d | a b c d | a b c d) 输入通过在相反边缘进行环绕来扩展。"mirror": (c d c b | a b c d | c b a b) 输入通过围绕边缘进行镜像来扩展。"reflect": (d c b a | a b c d | d c b a) 输入通过围绕最后一个像素的边缘进行反射来扩展。fill_mode="constant"时,用于输入边界之外的点的数值。默认为0。返回
输出输入或输入的批次。
pad_images 函数keras.ops.image.pad_images(
images,
top_padding=None,
left_padding=None,
bottom_padding=None,
right_padding=None,
target_height=None,
target_width=None,
data_format=None,
)
用零填充images,使其达到指定的height和width。
参数
"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
填充后的图像或图像批次。
示例
>>> images = np.random.random((15, 25, 3))
>>> padded_images = keras.ops.image.pad_images(
... images, 2, 3, target_height=20, target_width=30
... )
>>> padded_images.shape
(20, 30, 3)
>>> batch_images = np.random.random((2, 15, 25, 3))
>>> padded_batch = keras.ops.image.pad_images(
... batch_images, 2, 3, target_height=20, target_width=30
... )
>>> padded_batch.shape
(2, 20, 30, 3)
perspective_transform 函数keras.ops.image.perspective_transform(
images,
start_points,
end_points,
interpolation="bilinear",
fill_value=0,
data_format=None,
)
对图像应用透视变换。
参数
(N, 4, 2)或(4, 2)的张量,表示原始图像中定义变换的源点。(N, 4, 2)或(4, 2)的张量,表示变换后输出图像中的目标点。"nearest"和"bilinear"。默认为"bilinear"。0。"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
应用透视变换后的图像或图像批次。
示例
>>> x = np.random.random((2, 64, 80, 3)) # batch of 2 RGB images
>>> start_points = np.array(
... [
... [[0, 0], [0, 64], [80, 0], [80, 64]],
... [[0, 0], [0, 64], [80, 0], [80, 64]],
... ]
... )
>>> end_points = np.array(
... [
... [[3, 5], [7, 64], [76, -10], [84, 61]],
... [[8, 10], [10, 61], [65, 3], [88, 43]],
... ]
... )
>>> y = keras.ops.image.perspective_transform(x, start_points, end_points)
>>> y.shape
(2, 64, 80, 3)
>>> x = np.random.random((64, 80, 3)) # single RGB image
>>> start_points = np.array([[0, 0], [0, 64], [80, 0], [80, 64]])
>>> end_points = np.array([[3, 5], [7, 64], [76, -10], [84, 61]])
>>> y = keras.ops.image.perspective_transform(x, start_points, end_points)
>>> y.shape
(64, 80, 3)
>>> x = np.random.random((2, 3, 64, 80)) # batch of 2 RGB images
>>> start_points = np.array(
... [
... [[0, 0], [0, 64], [80, 0], [80, 64]],
... [[0, 0], [0, 64], [80, 0], [80, 64]],
... ]
... )
>>> end_points = np.array(
... [
... [[3, 5], [7, 64], [76, -10], [84, 61]],
... [[8, 10], [10, 61], [65, 3], [88, 43]],
... ]
... )
>>> y = keras.ops.image.perspective_transform(
... x, start_points, end_points, data_format="channels_first"
... )
>>> y.shape
(2, 3, 64, 80)
resize 函数keras.ops.image.resize(
images,
size,
interpolation="bilinear",
antialias=False,
crop_to_aspect_ratio=False,
pad_to_aspect_ratio=False,
fill_mode="constant",
fill_value=0.0,
data_format=None,
)
使用指定的插值方法将图像缩放到指定大小。
参数
(height, width)。"nearest"、"bilinear"和"bicubic"。默认为"bilinear"。True,则在不扭曲纵横比的情况下重塑图像。当原始纵横比与目标纵横比不同时,将裁剪输出图像,以便返回图像中(大小为 (height, width))与目标纵横比匹配的最大可能窗口。默认情况下(crop_to_aspect_ratio=False),可能不保留纵横比。True,则在不失真的情况下填充图像。当原始宽高比与目标宽高比不同时,输出图像将在较短的边上均匀填充。pad_to_aspect_ratio=True时,填充区域根据给定的模式填充。目前只支持"constant"(用等于fill_value的常量值填充)。pad_to_aspect_ratio=True时使用的填充值。"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
缩放后的图像或图像批次。
示例
>>> x = np.random.random((2, 4, 4, 3)) # batch of 2 RGB images
>>> y = keras.ops.image.resize(x, (2, 2))
>>> y.shape
(2, 2, 2, 3)
>>> x = np.random.random((4, 4, 3)) # single RGB image
>>> y = keras.ops.image.resize(x, (2, 2))
>>> y.shape
(2, 2, 3)
>>> x = np.random.random((2, 3, 4, 4)) # batch of 2 RGB images
>>> y = keras.ops.image.resize(x, (2, 2),
... data_format="channels_first")
>>> y.shape
(2, 3, 2, 2)
rgb_to_hsv 函数keras.ops.image.rgb_to_hsv(images, data_format=None)
将RGB图像转换为HSV。
images 必须是浮点类型,并且只有当images中的值在[0, 1]范围内时,输出才有明确定义。
所有HSV值都在[0, 1]范围内。色调为0对应纯红色,1/3对应纯绿色,2/3对应纯蓝色。
参数
"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
HSV图像或HSV图像批次。
示例
>>> import numpy as np
>>> from keras import ops
>>> x = np.random.random((2, 4, 4, 3))
>>> y = ops.image.rgb_to_hsv(x)
>>> y.shape
(2, 4, 4, 3)
>>> x = np.random.random((4, 4, 3)) # Single RGB image
>>> y = ops.image.rgb_to_hsv(x)
>>> y.shape
(4, 4, 3)
>>> x = np.random.random((2, 3, 4, 4))
>>> y = ops.image.rgb_to_hsv(x, data_format="channels_first")
>>> y.shape
(2, 3, 4, 4)
rgb_to_grayscale 函数keras.ops.image.rgb_to_grayscale(images, data_format=None)
将RGB图像转换为灰度图。
此函数将RGB图像转换为灰度图像。它支持3D和4D张量。
参数
"channels_last"或"channels_first"。"channels_last"对应于形状为(batch, height, width, channels)的输入,而"channels_first"对应于形状为(batch, channels, height, width)的输入。如果未指定,则值将默认为keras.config.image_data_format。返回
灰度图像或灰度图像批次。
示例
>>> import numpy as np
>>> from keras import ops
>>> x = np.random.random((2, 4, 4, 3))
>>> y = ops.image.rgb_to_grayscale(x)
>>> y.shape
(2, 4, 4, 1)
>>> x = np.random.random((4, 4, 3)) # Single RGB image
>>> y = ops.image.rgb_to_grayscale(x)
>>> y.shape
(4, 4, 1)
>>> x = np.random.random((2, 3, 4, 4))
>>> y = ops.image.rgb_to_grayscale(x, data_format="channels_first")
>>> y.shape
(2, 1, 4, 4)