OPTBackbone
类keras_hub.models.OPTBackbone(
vocabulary_size,
num_layers,
num_heads,
hidden_dim,
intermediate_dim,
dropout=0.1,
max_sequence_length=2048,
dtype=None,
**kwargs
)
一个 OPT 解码器网络。
此类实现了基于 Transformer 的解码器模型,如 "OPT:开放式预训练 Transformer 语言模型" 中所述。默认构造函数提供了一个完全可定制的、随机初始化的 OPT 模型,具有任意数量的层、头和嵌入维度。要加载预设架构和权重,请使用 from_preset()
构造函数。
免责声明:预训练模型按“原样”提供,不提供任何形式的保证或条件。底层模型由第三方提供,并受单独许可的约束,可在此处 获取。
参数
None
,则 max_sequence_length
使用序列长度的值。这决定了位置嵌入的变量形状。keras.mixed_precision.DTypePolicy
。用于模型计算和权重的 dtype。请注意,某些计算(例如 softmax 和层归一化)将始终以 float32 精度执行,而无论 dtype 如何。示例
input_data = {
"token_ids": np.ones(shape=(1, 12), dtype="int32"),
"padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
}
# Pretrained OPT decoder
model = keras_hub.models.OPTBackbone.from_preset("opt_125m_en")
model(input_data)
# Randomly initialized OPT decoder model with a custom config
model = keras_hub.models.OPTBackbone(
vocabulary_size=50265,
num_layers=4,
num_heads=4,
hidden_dim=256,
intermediate_dim=512,
max_sequence_length=128,
)
model(input_data)
from_preset
方法OPTBackbone.from_preset(preset, load_weights=True, **kwargs)
从模型预设实例化一个 keras_hub.models.Backbone
。
预设是用于保存和加载预训练模型的配置、权重和其他文件资产的目录。preset
可以作为以下之一传递:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
此构造函数可以通过两种方式之一调用。从基类调用,如 keras_hub.models.Backbone.from_preset()
,或从模型类调用,如 keras_hub.models.GemmaBackbone.from_preset()
。如果从基类调用,则返回对象的子类将从预设目录中的配置推断。
对于任何 Backbone
子类,都可以运行 cls.presets.keys()
来列出该类上可用的所有内置预设。
参数
True
,则权重将加载到模型架构中。如果为 False
,则权重将被随机初始化。示例
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
预设名称 | 参数 | 描述 |
---|---|---|
opt_125m_en | 125.24M | 12 层 OPT 模型,其中保留大小写。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。 |
opt_1.3b_en | 1.32B | 24 层 OPT 模型,其中保留大小写。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。 |
opt_2.7b_en | 2.70B | 32 层 OPT 模型,其中保留大小写。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。 |
opt_6.7b_en | 6.70B | 32 层 OPT 模型,其中保留大小写。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。 |
token_embedding
属性keras_hub.models.OPTBackbone.token_embedding
用于嵌入标记 ID 的 keras.layers.Embedding
实例。
此层将整数标记 ID 嵌入到模型的隐藏维度。