FalconTokenizer
类keras_hub.tokenizers.FalconTokenizer(vocabulary=None, merges=None, **kwargs)
基于 BytePairTokenizer 的 Falcon 分词器。
此分词器类将原始字符串分词为整数序列,并基于 keras_hub.tokenizers.BytePairTokenizer
。与底层分词器不同,它将检查 Falcon 模型所需的所有特殊标记,并提供 from_preset()
方法以自动为 Falcon 预设下载匹配的词汇表。
如果输入是字符串批次(秩 > 0),则该层将输出一个 tf.RaggedTensor
,其中输出的最后一维是不规则的。
如果输入是标量字符串(秩 == 0),则该层将输出一个密集的 tf.Tensor
,其静态形状为 [None]
。
参数
示例
# Unbatched input.
tokenizer = keras_hub.models.FalconTokenizer.from_preset("falcon_refinedweb_1b_en")
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
merges += ["Ġ f", "o x", "Ġf ox"]
tokenizer = keras_hub.models.FalconTokenizer(vocabulary=vocab, merges=merges)
tokenizer("a quick fox.")
from_preset
方法FalconTokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
从模型预设实例化 keras_hub.models.Tokenizer
。
预设是用于保存和加载预训练模型的配置、权重和其他文件资产的目录。preset
可以作为以下内容之一传递
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Tokenizer
子类,您都可以运行 cls.presets.keys()
来列出该类上可用的所有内置预设。
此构造函数可以以两种方式之一调用。要么从基类调用,如 keras_hub.models.Tokenizer.from_preset()
,要么从模型类调用,如 keras_hub.models.GemmaTokenizer.from_preset()
。如果从基类调用,则返回对象的子类将从预设目录中的配置推断出来。
参数
True
,则权重将加载到模型架构中。如果为 False
,则权重将被随机初始化。示例
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
预设名称 | 参数 | 描述 |
---|---|---|
falcon_refinedweb_1b_en | 1.31B | 在 RefinedWeb 数据集的 3500 亿个标记上训练的 24 层 Falcon 模型(具有 10 亿个参数的 Falcon)。 |