OPTCausalLM
类keras_hub.models.OPTCausalLM(backbone, preprocessor=None, **kwargs)
一个用于因果语言建模的端到端 OPT 模型。
因果语言模型 (LM) 根据前面的标记预测下一个标记。这种任务设置可以用于在纯文本输入上无监督地训练模型,或自动回归地生成与用于训练的数据类似的纯文本。该任务可以通过简单地调用 fit()
来用于预训练或微调 GPT-2 模型。
该模型有一个 generate()
方法,可以根据提示生成文本。所使用的生成策略由 compile()
上的附加 sampler
参数控制。您可以重新编译模型并使用不同的 keras_hub.samplers
对象来控制生成。默认情况下,将使用 "top_k"
采样。
该模型可以选择配置一个 preprocessor
层,在这种情况下,它将在 fit()
、predict()
、evaluate()
和 generate()
期间自动对字符串输入应用预处理。这在通过 from_preset()
创建模型时是默认完成的。
免责声明:预训练模型按“原样”提供,不附带任何形式的保证或条件。底层模型由第三方提供,并受单独许可的约束,可在此处获取。
参数
keras_hub.models.OPTBackbone
实例。keras_hub.models.OPTCausalLMPreprocessor
或 None
。如果为 None
,则此模型将不应用预处理,输入应在调用模型之前进行预处理。示例
使用 generate()
进行文本生成。
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_125m_en")
opt_lm.generate("I want to say", max_length=30)
# Generate with batched prompts.
opt_lm.generate(["This is a", "Where are you"], max_length=30)
使用自定义采样器编译 generate()
函数。
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_125m_en")
opt_lm.compile(sampler="greedy")
opt_lm.generate("I want to say", max_length=30)
opt_lm.compile(sampler=keras_hub.samplers.BeamSampler(num_beams=2))
opt_lm.generate("I want to say", max_length=30)
不带预处理使用 generate()
。
# Prompt the model with `5338, 318` (the token ids for `"Who is"`).
# Use `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"token_ids": np.array([[5338, 318, 0, 0, 0]] * 2),
"padding_mask": np.array([[1, 1, 0, 0, 0]] * 2),
}
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"opt_125m_en",
preprocessor=None,
)
opt_lm.generate(prompt)
在单个批次上调用 fit()
。
features = ["The quick brown fox jumped.", "I forgot my homework."]
opt_lm = keras_hub.models.OPTCausalLM.from_preset("opt_125m_en")
opt_lm.fit(x=features, batch_size=2)
不带预处理调用 fit()
。
x = {
"token_ids": np.array([[1, 2, 3, 4, 5]] * 2),
"padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[2, 3, 4, 5, 0]] * 2)
sw = np.array([[1, 1, 1, 1, 1]] * 2)
opt_lm = keras_hub.models.OPTCausalLM.from_preset(
"opt_base_en",
preprocessor=None,
)
opt_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
自定义骨干和词汇表。
features = ["a quick fox.", "a fox quick."]
vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
merges += ["Ġ f", "o x", "Ġf ox"]
tokenizer = keras_hub.models.OPTTokenizer(
vocabulary=vocab,
merges=merges,
)
preprocessor = keras_hub.models.OPTCausalLMPreprocessor(
tokenizer=tokenizer,
sequence_length=128,
)
model = keras_hub.models.OPTBackbone(
vocabulary_size=50265,
num_layers=4,
num_heads=4,
hidden_dim=256,
intermediate_dim=512,
max_sequence_length=128,
)
opt_lm = keras_hub.models.OPTCausalLM(
backbone=backbone,
preprocessor=preprocessor,
)
opt_lm.fit(x=features, batch_size=2)
from_preset
方法OPTCausalLM.from_preset(preset, load_weights=True, **kwargs)
从模型预设实例化一个 keras_hub.models.Task
。
预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset
可以作为以下之一传递:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Task
子类,您都可以运行 cls.presets.keys()
来列出该类上所有可用的内置预设。
此构造函数可以通过两种方式之一调用。要么来自特定任务的基础类,如 keras_hub.models.CausalLM.from_preset()
,要么来自模型类,如 keras_hub.models.BertTextClassifier.from_preset()
。如果从基础类调用,则返回对象的子类将根据预设目录中的配置进行推断。
参数
True
,已保存的权重将被加载到模型架构中。如果为 False
,所有权重将被随机初始化。示例
# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
预设 | 参数 | 描述 |
---|---|---|
opt_125m_en | 125.24M | 12 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。 |
opt_1.3b_en | 1.32B | 24 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。 |
opt_2.7b_en | 2.70B | 32 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。 |
opt_6.7b_en | 6.70B | 32 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。 |
generate
方法OPTCausalLM.generate(
inputs, max_length=None, stop_token_ids="auto", strip_prompt=False
)
根据提示 inputs
生成文本。
此方法根据给定的 inputs
生成文本。用于生成的采样方法可以通过 compile()
方法设置。
如果 inputs
是一个 tf.data.Dataset
,输出将“逐批”生成并连接起来。否则,所有输入将被视为单个批次处理。
如果模型附加了 preprocessor
,则 inputs
将在 generate()
函数内部进行预处理,并且应与 preprocessor
层期望的结构匹配(通常是原始字符串)。如果未附加 preprocessor
,则输入应与 backbone
期望的结构匹配。请参阅上面的示例用法,了解每种情况的演示。
参数
tf.data.Dataset
。如果模型附加了 preprocessor
,则 inputs
应与 preprocessor
层期望的结构匹配。如果未附加 preprocessor
,则 inputs
应与 backbone
模型期望的结构匹配。preprocessor
中配置的最大 sequence_length
。如果 preprocessor
为 None
,则 inputs
应填充到所需的最小长度,此参数将被忽略。None
、"auto" 或标记 ID 元组。默认为 "auto",它使用 preprocessor.tokenizer.end_token_id
。未指定处理器将产生错误。None 在生成 max_length
个标记后停止生成。您还可以指定模型应停止的标记 ID 列表。请注意,每个标记序列都将被解释为停止标记,不支持多标记停止序列。backbone
属性keras_hub.models.OPTCausalLM.backbone
一个具有核心架构的 keras_hub.models.Backbone
模型。
preprocessor
属性keras_hub.models.OPTCausalLM.preprocessor
用于预处理输入的 keras_hub.models.Preprocessor
层。