KerasHub:预训练模型 / API 文档 / 模型架构 / OPT / OPTBackbone 模型

OPTBackbone 模型

[源代码]

OPTBackbone

keras_hub.models.OPTBackbone(
    vocabulary_size,
    num_layers,
    num_heads,
    hidden_dim,
    intermediate_dim,
    dropout=0.1,
    max_sequence_length=2048,
    dtype=None,
    **kwargs
)

一个 OPT 解码器网络。

此类实现了《OPT:开放预训练 Transformer 语言模型》中描述的基于 Transformer 的解码器模型。默认构造函数提供了一个完全可定制的、随机初始化的 OPT 模型,具有任意数量的层、注意力头和嵌入维度。要加载预设架构和权重,请使用 from_preset() 构造函数。

免责声明:预训练模型按“原样”提供,不附带任何明示或暗示的保证或条件。底层模型由第三方提供,并受单独许可协议约束,该协议可在此处获取:此处

参数

  • vocabulary_size:整数。词元词汇表的大小。
  • num_layers:int。Transformer 解码器层的数量。
  • num_heads: int。每个 Transformer 的注意力头数。隐藏层维度必须能被注意力头数整除。
  • hidden_dim:int。Transformer 解码器层的隐藏维度。
  • intermediate_dim:int。每个 Transformer 解码器层中两层前馈网络中第一个 Dense 层的输出维度。
  • dropout:float。Transformer 解码器的 dropout 概率。
  • max_sequence_length:int。此解码器可以消耗的最大序列长度。如果为 None,则 max_sequence_length 使用序列长度的值。这决定了位置嵌入的变量形状。
  • dtype:string 或 keras.mixed_precision.DTypePolicy。用于模型计算和权重的 dtype。请注意,某些计算(例如 softmax 和层归一化)无论 dtype 如何,都将始终以 float32 精度完成。

示例

input_data = {
    "token_ids": np.ones(shape=(1, 12), dtype="int32"),
    "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]),
}

# Pretrained OPT decoder
model = keras_hub.models.OPTBackbone.from_preset("opt_125m_en")
model(input_data)

# Randomly initialized OPT decoder model with a custom config
model = keras_hub.models.OPTBackbone(
    vocabulary_size=50265,
    num_layers=4,
    num_heads=4,
    hidden_dim=256,
    intermediate_dim=512,
    max_sequence_length=128,
)
model(input_data)

[源代码]

from_preset 方法

OPTBackbone.from_preset(preset, load_weights=True, **kwargs)

从模型预设实例化一个 keras_hub.models.Backbone

预设是一个包含配置、权重和其他文件资源的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

此构造函数可以通过两种方式之一调用。要么从基类(如 keras_hub.models.Backbone.from_preset())调用,要么从模型类(如 keras_hub.models.GemmaBackbone.from_preset())调用。如果从基类调用,返回对象的子类将从预设目录中的配置推断。

对于任何 Backbone 子类,您可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights:布尔值。如果为 `True`,权重将被加载到模型架构中。如果为 `False`,权重将被随机初始化。

示例

# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
    "gemma_2b_en",
)

# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
    "bert_base_en",
    load_weights=False,
)
预设 参数 描述
opt_125m_en 125.24M 12 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。
opt_1.3b_en 1.32B 24 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。
opt_2.7b_en 2.70B 32 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。
opt_6.7b_en 6.70B 32 层 OPT 模型,大小写保持不变。在 BookCorpus、CommonCrawl、Pile 和 PushShift.io 语料库上训练。

token_embedding 属性

keras_hub.models.OPTBackbone.token_embedding

一个用于嵌入词元 ID 的 keras.layers.Embedding 实例。

该层将整数词元 ID 嵌入到模型的隐藏维度。