EfficientNetImageConverter
类keras_hub.layers.EfficientNetImageConverter(
image_size=None,
scale=None,
offset=None,
crop_to_aspect_ratio=True,
pad_to_aspect_ratio=False,
interpolation="bilinear",
antialias=False,
bounding_box_format="yxyx",
data_format=None,
**kwargs
)
将原始图像预处理为适合模型的输入。
该类将原始图像转换为适合模型的输入。此转换按以下步骤进行:
该层将接收一个 channels last 或 channels first 格式的原始图像张量作为输入,并输出一个用于建模的预处理图像输入。该张量可以是批处理的(秩为 4),也可以是非批处理的(秩为 3)。
此层可与 `from_preset()` 构造函数一起使用,加载一个层,该层将为特定的预训练模型重新缩放和调整图像大小。以这种方式使用该层允许编写预处理代码,该代码在模型检查点之间切换时无需更新。
参数
示例
# Resize raw images and scale them to [0, 1].
converter = keras_hub.layers.ImageConverter(
image_size=(128, 128),
scale=1. / 255,
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
# Resize images to the specific size needed for a PaliGemma preset.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_224"
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
from_preset
方法EfficientNetImageConverter.from_preset(preset, **kwargs)
从模型预设实例化一个 `keras_hub.layers.ImageConverter`。
预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset
可以作为以下之一传递:
您可以运行 `cls.presets.keys()` 来列出该类上所有可用的内置预设。
参数
示例
batch = np.random.randint(0, 256, size=(2, 512, 512, 3))
# Resize images for `"pali_gemma_3b_224"`.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_224"
)
converter(batch) # # Output shape (2, 224, 224, 3)
# Resize images for `"pali_gemma_3b_448"` without cropping.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_448",
crop_to_aspect_ratio=False,
)
converter(batch) # # Output shape (2, 448, 448, 3)
预设 | 参数 | 描述 |
---|---|---|
efficientnet_lite0_ra_imagenet | 4.65M | EfficientNet-Lite 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行微调。 |
efficientnet_b0_ra_imagenet | 5.29M | EfficientNet B0 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行预训练。 |
efficientnet_b0_ra4_e3600_r224_imagenet | 5.29M | EfficientNet B0 模型由 Ross Wightman 在 ImageNet 1k 数据集上预训练。使用 timm 脚本训练,超参数受 MobileNet-V4 small、timm 的通用超参数和“ResNet Strikes Back”的启发。 |
efficientnet_es_ra_imagenet | 5.44M | EfficientNet-EdgeTPU Small 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行训练。 |
efficientnet_em_ra2_imagenet | 6.90M | EfficientNet-EdgeTPU Medium 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。 |
efficientnet_b1_ft_imagenet | 7.79M | EfficientNet B1 模型在 ImageNet 1k 数据集上进行微调。 |
efficientnet_b1_ra4_e3600_r240_imagenet | 7.79M | EfficientNet B1 模型由 Ross Wightman 在 ImageNet 1k 数据集上预训练。使用 timm 脚本训练,超参数受 MobileNet-V4 small、timm 的通用超参数和“ResNet Strikes Back”的启发。 |
efficientnet_b2_ra_imagenet | 9.11M | EfficientNet B2 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行预训练。 |
efficientnet_el_ra_imagenet | 10.59M | EfficientNet-EdgeTPU Large 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行训练。 |
efficientnet_b3_ra2_imagenet | 12.23M | EfficientNet B3 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行预训练。 |
efficientnet2_rw_t_ra2_imagenet | 13.65M | EfficientNet-v2 Tiny 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。 |
efficientnet_b4_ra2_imagenet | 19.34M | EfficientNet B4 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行预训练。 |
efficientnet2_rw_s_ra2_imagenet | 23.94M | EfficientNet-v2 Small 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。 |
efficientnet_b5_sw_imagenet | 30.39M | EfficientNet B5 模型由 Ross Wightman 在 ImageNet 12k 数据集上预训练。基于 Swin Transformer 训练/预训练策略,并进行了修改(与 DeiT 和 ConvNeXt 策略相关)。 |
efficientnet_b5_sw_ft_imagenet | 30.39M | EfficientNet B5 模型由 Ross Wightman 在 ImageNet 12k 数据集上预训练,并在 ImageNet-1k 上微调。基于 Swin Transformer 训练/预训练策略,并进行了修改(与 DeiT 和 ConvNeXt 策略相关)。 |
efficientnet2_rw_m_agc_imagenet | 53.24M | EfficientNet-v2 Medium 模型在 ImageNet 1k 数据集上使用自适应梯度裁剪进行训练。 |