KerasHub: 预训练模型 / API 文档 / 预处理层 / ImageConverter 层

ImageConverter 层

[源代码]

ImageConverter

keras_hub.layers.ImageConverter(
    image_size=None,
    scale=None,
    offset=None,
    crop_to_aspect_ratio=True,
    pad_to_aspect_ratio=False,
    interpolation="bilinear",
    antialias=False,
    bounding_box_format="yxyx",
    data_format=None,
    **kwargs
)

将原始图像预处理为适合模型的输入。

该类将原始图像转换为适合模型的输入。此转换按以下步骤进行:

  1. 使用 `image_size` 调整图像大小。如果 `image_size` 为 `None`,则将跳过此步骤。
  2. 通过乘以 `scale` 来重新缩放图像,`scale` 可以是全局值或按通道的值。如果 `scale` 为 `None`,则将跳过此步骤。
  3. 通过加上 `offset` 来偏移图像,`offset` 可以是全局值或按通道的值。如果 `offset` 为 `None`,则将跳过此步骤。

该层将接收一个 channels last 或 channels first 格式的原始图像张量作为输入,并输出一个用于建模的预处理图像输入。该张量可以是批处理的(秩为 4),也可以是非批处理的(秩为 3)。

此层可与 from_preset() 构造函数配合使用,以加载一个层,该层将为特定的预训练模型重新缩放和调整图像大小。以这种方式使用该层允许编写预处理代码,该代码在切换模型检查点时无需更新。

参数

  • image_size:`(int, int)` 元组或 `None`。图像的输出尺寸,不包括通道轴。如果为 `None`,则不会调整输入的大小。
  • scale: 浮点数、浮点数元组或 None。要应用于输入的比例。如果 scale 是单个浮点数,则整个输入将乘以 scale。如果 scale 是一个元组,则假定它包含每个通道的比例值,乘以输入图像的每个通道。如果 scaleNone,则不应用缩放。
  • offset: 浮点数、浮点数元组或 None。要应用于输入的偏移量。如果 offset 是单个浮点数,则整个输入将与 offset 求和。如果 offset 是一个元组,则假定它包含每个通道的偏移值,与输入图像的每个通道求和。如果 offsetNone,则不应用缩放。
  • crop_to_aspect_ratio: 如果为 True,则在不失真纵横比的情况下调整图像大小。当原始纵横比与目标纵横比不同时,输出图像将被裁剪,以返回图像中与目标纵横比匹配的最大可能窗口(大小为 (height, width))。默认情况下(crop_to_aspect_ratio=False),纵横比可能不保留。
  • interpolation:字符串,插值方法。支持 `"bilinear"`、`"nearest"`、`"bicubic"`、`"lanczos3"`、`"lanczos5"`。默认为 `"bilinear"`。
  • antialias:下采样图像时是否使用抗锯齿滤波器。默认为 `False`。
  • bounding_box_format: 一个字符串,指定边界框的格式,可以是 "xyxy""rel_xyxy""xywh""center_xywh""yxyx""rel_yxyx" 中的一个。指定将与图像一起调整为 image_size 的边界框的格式。要将边界框传递给此层,请在调用该层时传递一个带有键 "images""bounding_boxes" 的字典。
  • data_format: 字符串,可以是 "channels_last""channels_first"。输入中的维度顺序。"channels_last" 对应于形状为 (batch, height, width, channels) 的输入,而 "channels_first" 对应于形状为 (batch, channels, height, width) 的输入。它默认为 Keras 配置文件 ~/.keras/keras.json 中找到的 image_data_format 值。如果您从未设置它,则它将是 "channels_last"

示例

# Resize raw images and scale them to [0, 1].
converter = keras_hub.layers.ImageConverter(
    image_size=(128, 128),
    scale=1. / 255,
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))

# Resize images to the specific size needed for a PaliGemma preset.
converter = keras_hub.layers.ImageConverter.from_preset(
    "pali_gemma_3b_224"
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))

[源代码]

from_preset 方法

ImageConverter.from_preset(preset, **kwargs)

从模型预设实例化一个 `keras_hub.layers.ImageConverter`

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 内置预设标识符,如 `'pali_gemma_3b_224'`
  2. Kaggle Models 句柄,如 `'kaggle://user/paligemma/keras/pali_gemma_3b_224'`
  3. Hugging Face 句柄,如 `'hf://user/pali_gemma_3b_224'`
  4. 本地预设目录的路径,如 `'./pali_gemma_3b_224'`

您可以运行 `cls.presets.keys()` 来列出该类上所有可用的内置预设。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights:布尔值。如果为 `True`,权重将被加载到模型架构中。如果为 `False`,权重将被随机初始化。

示例

batch = np.random.randint(0, 256, size=(2, 512, 512, 3))

# Resize images for `"pali_gemma_3b_224"`.
converter = keras_hub.layers.ImageConverter.from_preset(
    "pali_gemma_3b_224"
)
converter(batch) # # Output shape (2, 224, 224, 3)

# Resize images for `"pali_gemma_3b_448"` without cropping.
converter = keras_hub.layers.ImageConverter.from_preset(
    "pali_gemma_3b_448",
    crop_to_aspect_ratio=False,
)
converter(batch) # # Output shape (2, 448, 448, 3)
预设 参数 描述
basnet_duts 108.89M 带有 34 层 ResNet 骨干网络的 BASNet 模型,在 288x288 分辨率的 DUTS 图像数据集上预训练。模型训练由 Hamid Ali (https://github.com/hamidriasat/BASNet) 完成。
clip_vit_base_patch16 149.62M 1.5 亿参数,视觉 12 层,文本 12 层,补丁大小 16 的 CLIP 模型。
clip_vit_base_patch32 151.28M 1.51 亿参数,视觉 12 层,文本 12 层,补丁大小 32 的 CLIP 模型。
clip_vit_b_32_laion2b_s34b_b79k 151.28M 1.51 亿参数,视觉 12 层,文本 12 层,补丁大小 32 的 Open CLIP 模型。
clip_vit_large_patch14 427.62M 4.28 亿参数,视觉 24 层,文本 12 层,补丁大小 14 的 CLIP 模型。
clip_vit_large_patch14_336 427.94M 4.28 亿参数,视觉 24 层,文本 12 层,补丁大小 14,图像大小 336 的 CLIP 模型。
clip_vit_h_14_laion2b_s32b_b79k 986.11M 9.86 亿参数,视觉 32 层,文本 24 层,补丁大小 14 的 Open CLIP 模型。
clip_vit_g_14_laion2b_s12b_b42k 1.37B 14 亿参数,视觉 40 层,文本 24 层,补丁大小 14 的 Open CLIP 模型。
clip_vit_bigg_14_laion2b_39b_b160k 2.54B 25 亿参数,视觉 48 层,文本 32 层,补丁大小 14 的 Open CLIP 模型。
csp_resnext_50_ra_imagenet 20.57M 在随机增强的 ImageNet 1k 数据集上预训练的 CSP-ResNeXt(交叉阶段部分)图像分类模型,分辨率为 256x256。
csp_resnet_50_ra_imagenet 21.62M 在随机增强的 ImageNet 1k 数据集上预训练的 CSP-ResNet(交叉阶段部分)图像分类模型,分辨率为 256x256。
csp_darknet_53_ra_imagenet 27.64M 在随机增强的 ImageNet 1k 数据集上预训练的 CSP-DarkNet(交叉阶段部分)图像分类模型,分辨率为 256x256。
darknet_53_imagenet 41.61M 在 ImageNet 1k 数据集上预训练的 DarkNet 图像分类模型,分辨率为 256x256。
deeplab_v3_plus_resnet50_pascalvoc 39.19M DeepLabV3+ 模型,以 ResNet50 作为图像编码器,并在由语义边界数据集(SBD)增强的 Pascal VOC 数据集上训练,分类准确率为 90.01,平均 IoU 为 0.63。
densenet_121_imagenet 7.04M 121 层 DenseNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
densenet_169_imagenet 12.64M 169 层 DenseNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
densenet_201_imagenet 18.32M 201 层 DenseNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
efficientnet_lite0_ra_imagenet 4.65M EfficientNet-Lite 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行微调。
efficientnet_b0_ra_imagenet 5.29M EfficientNet B0 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行预训练。
efficientnet_b0_ra4_e3600_r224_imagenet 5.29M EfficientNet B0 模型由 Ross Wightman 在 ImageNet 1k 数据集上预训练。使用 timm 脚本训练,超参数受 MobileNet-V4 small、timm 的通用超参数和“ResNet Strikes Back”的启发。
efficientnet_es_ra_imagenet 5.44M EfficientNet-EdgeTPU Small 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行训练。
efficientnet_em_ra2_imagenet 6.90M EfficientNet-EdgeTPU Medium 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。
efficientnet_b1_ft_imagenet 7.79M EfficientNet B1 模型在 ImageNet 1k 数据集上进行微调。
efficientnet_b1_ra4_e3600_r240_imagenet 7.79M EfficientNet B1 模型由 Ross Wightman 在 ImageNet 1k 数据集上预训练。使用 timm 脚本训练,超参数受 MobileNet-V4 small、timm 的通用超参数和“ResNet Strikes Back”的启发。
efficientnet_b2_ra_imagenet 9.11M EfficientNet B2 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行预训练。
efficientnet_el_ra_imagenet 10.59M EfficientNet-EdgeTPU Large 模型在 ImageNet 1k 数据集上使用 RandAugment 策略进行训练。
efficientnet_b3_ra2_imagenet 12.23M EfficientNet B3 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行预训练。
efficientnet2_rw_t_ra2_imagenet 13.65M EfficientNet-v2 Tiny 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。
efficientnet_b4_ra2_imagenet 19.34M EfficientNet B4 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行预训练。
efficientnet2_rw_s_ra2_imagenet 23.94M EfficientNet-v2 Small 模型在 ImageNet 1k 数据集上使用 RandAugment2 策略进行训练。
efficientnet_b5_sw_imagenet 30.39M EfficientNet B5 模型由 Ross Wightman 在 ImageNet 12k 数据集上预训练。基于 Swin Transformer 训练/预训练策略,并进行了修改(与 DeiT 和 ConvNeXt 策略相关)。
efficientnet_b5_sw_ft_imagenet 30.39M EfficientNet B5 模型由 Ross Wightman 在 ImageNet 12k 数据集上预训练,并在 ImageNet-1k 上微调。基于 Swin Transformer 训练/预训练策略,并进行了修改(与 DeiT 和 ConvNeXt 策略相关)。
efficientnet2_rw_m_agc_imagenet 53.24M EfficientNet-v2 Medium 模型在 ImageNet 1k 数据集上使用自适应梯度裁剪进行训练。
gemma3_1b 999.89M 10 亿参数,26 层,仅文本预训练 Gemma3 模型。
gemma3_instruct_1b 999.89M 10 亿参数,26 层,仅文本指令微调 Gemma3 模型。
gemma3_4b_text 3.88B 40 亿参数,34 层,仅文本预训练 Gemma3 模型。
gemma3_instruct_4b_text 3.88B 40 亿参数,34 层,仅文本指令微调 Gemma3 模型。
gemma3_4b 4.30B 40 亿参数,34 层,视觉+文本预训练 Gemma3 模型。
gemma3_instruct_4b 4.30B 40 亿参数,34 层,视觉+文本指令微调 Gemma3 模型。
gemma3_12b_text 11.77B 120 亿参数,48 层,仅文本预训练 Gemma3 模型。
gemma3_instruct_12b_text 11.77B 120 亿参数,48 层,仅文本指令微调 Gemma3 模型。
gemma3_12b 12.19B 120 亿参数,48 层,视觉+文本预训练 Gemma3 模型。
gemma3_instruct_12b 12.19B 120 亿参数,48 层,视觉+文本指令微调 Gemma3 模型。
gemma3_27b_text 27.01B 270 亿参数,62 层,仅文本预训练 Gemma3 模型。
gemma3_instruct_27b_text 27.01B 270 亿参数,62 层,仅文本指令微调 Gemma3 模型。
gemma3_27b 27.43B 270 亿参数,62 层,视觉+文本预训练 Gemma3 模型。
gemma3_instruct_27b 27.43B 270 亿参数,62 层,视觉+文本指令微调 Gemma3 模型。
mit_b0_ade20k_512 3.32M 具有 8 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b0_cityscapes_1024 3.32M 具有 8 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b1_ade20k_512 13.16M 具有 8 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b1_cityscapes_1024 13.16M 具有 8 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b2_ade20k_512 24.20M 具有 16 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b2_cityscapes_1024 24.20M 具有 16 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b3_ade20k_512 44.08M 具有 28 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b3_cityscapes_1024 44.08M 具有 28 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b4_ade20k_512 60.85M 具有 41 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b4_cityscapes_1024 60.85M 具有 41 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b5_ade20k_640 81.45M 具有 52 个 Transformer 块的 MiT (MixTransformer) 模型。
mit_b5_cityscapes_1024 81.45M 具有 52 个 Transformer 块的 MiT (MixTransformer) 模型。
mobilenet_v3_small_050_imagenet 278.78K 在 224x224 分辨率的 ImageNet 1k 数据集上预训练的小型 Mobilenet V3 模型。具有一半通道乘数。
mobilenet_v3_small_100_imagenet 939.12K 在 224x224 分辨率的 ImageNet 1k 数据集上预训练的小型 Mobilenet V3 模型。具有基线通道乘数。
mobilenet_v3_large_100_imagenet 3.00M 在 224x224 分辨率的 ImageNet 1k 数据集上预训练的大型 Mobilenet V3 模型。具有基线通道乘数。
mobilenet_v3_large_100_imagenet_21k 3.00M 在 224x224 分辨率的 ImageNet 21k 数据集上预训练的大型 Mobilenet V3 模型。具有基线通道乘数。
pali_gemma_3b_mix_224 2.92B 图像大小 224,混合微调,文本序列长度为 256
pali_gemma_3b_224 2.92B 图像大小 224,预训练,文本序列长度为 128
pali_gemma_3b_mix_448 2.92B 图像大小 448,混合微调,文本序列长度为 512
pali_gemma_3b_448 2.92B 图像大小 448,预训练,文本序列长度为 512
pali_gemma_3b_896 2.93B 图像大小 896,预训练,文本序列长度为 512
pali_gemma2_mix_3b_224 3.03B 30 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_3b_224 3.03B 30 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在混合数据集上进行预训练。
pali_gemma_2_ft_docci_3b_448 3.03B 30 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在 DOCCI 数据集上进行微调,以改进具有细粒度细节的描述。
pali_gemma2_mix_3b_448 3.03B 30 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_3b_448 3.03B 30 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_3b_896 3.04B 30 亿参数,图像大小 896,SigLIP-So400m 视觉编码器 27 层,Gemma2 2B 语言模型 26 层。此模型已在混合数据集上进行预训练。
pali_gemma2_mix_10b_224 9.66B 100 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_10b_224 9.66B 100 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在混合数据集上进行预训练。
pali_gemma2_ft_docci_10b_448 9.66B 100 亿参数,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在 DOCCI 数据集上进行微调,以改进具有细粒度细节的描述。
pali_gemma2_mix_10b_448 9.66B 100 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_10b_448 9.66B 100 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_10b_896 9.67B 100 亿参数,图像大小 896,SigLIP-So400m 视觉编码器 27 层,Gemma2 9B 语言模型 42 层。此模型已在混合数据集上进行预训练。
pali_gemma2_mix_28b_224 27.65B 280 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_mix_28b_448 27.65B 280 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在各种视觉语言任务和领域上进行微调。
pali_gemma2_pt_28b_224 27.65B 280 亿参数,图像大小 224,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_28b_448 27.65B 280 亿参数,图像大小 448,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在混合数据集上进行预训练。
pali_gemma2_pt_28b_896 27.65B 280 亿参数,图像大小 896,SigLIP-So400m 视觉编码器 27 层,Gemma2 27B 语言模型 46 层。此模型已在混合数据集上进行预训练。
resnet_18_imagenet 11.19M 18 层 ResNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_vd_18_imagenet 11.72M 18 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_vd_34_imagenet 21.84M 34 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_50_imagenet 23.56M 50 层 ResNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_v2_50_imagenet 23.56M 50 层 ResNetV2 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_vd_50_imagenet 25.63M 50 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_vd_50_ssld_imagenet 25.63M 50 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练,并采用知识蒸馏。
resnet_vd_50_ssld_v2_imagenet 25.63M 50 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练,并采用知识蒸馏和 AutoAugment。
resnet_vd_50_ssld_v2_fix_imagenet 25.63M 50 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练,并采用知识蒸馏、AutoAugment 和额外的分类头微调。
resnet_101_imagenet 42.61M 101 层 ResNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_v2_101_imagenet 42.61M 101 层 ResNetV2 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_vd_101_imagenet 44.67M 101 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_vd_101_ssld_imagenet 44.67M 101 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练,并采用知识蒸馏。
resnet_152_imagenet 58.30M 152 层 ResNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_vd_152_imagenet 60.36M 152 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
resnet_vd_200_imagenet 74.93M 200 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
retinanet_resnet50_fpn_v2_coco 31.56M RetinaNet 模型,带有 ResNet50 骨干网络,在 800x800 分辨率的 COCO 数据集上进行微调,FPN 特征从 P5 级别创建。
retinanet_resnet50_fpn_coco 34.12M RetinaNet 模型,带有 ResNet50 骨干网络,在 800x800 分辨率的 COCO 数据集上进行微调。
sam_base_sa1b 93.74M 在 SA1B 数据集上训练的基础 SAM 模型。
sam_huge_sa1b 312.34M 在 SA1B 数据集上训练的巨型 SAM 模型。
sam_large_sa1b 641.09M 在 SA1B 数据集上训练的大型 SAM 模型。
siglip_base_patch16_224 203.16M 2 亿参数,图像尺寸 224,在 WebLi 上预训练。
siglip_base_patch16_256 203.20M 2 亿参数,图像尺寸 256,在 WebLi 上预训练。
siglip_base_patch16_384 203.45M 2 亿参数,图像尺寸 384,在 WebLi 上预训练。
siglip_base_patch16_512 203.79M 2 亿参数,图像尺寸 512,在 WebLi 上预训练。
siglip_base_patch16_256_multilingual 370.63M 3.7 亿参数,图像尺寸 256,在 WebLi 上预训练。
siglip2_base_patch16_224 375.19M 3.75 亿参数,补丁大小 16,图像尺寸 224,在 WebLi 上预训练。
siglip2_base_patch16_256 375.23M 3.75 亿参数,补丁大小 16,图像尺寸 256,在 WebLi 上预训练。
siglip2_base_patch32_256 376.86M 3.76 亿参数,补丁大小 32,图像尺寸 256,在 WebLi 上预训练。
siglip2_base_patch16_384 376.86M 3.76 亿参数,补丁大小 16,图像尺寸 384,在 WebLi 上预训练。
siglip_large_patch16_256 652.15M 6.52 亿参数,图像尺寸 256,在 WebLi 上预训练。
siglip_large_patch16_384 652.48M 6.52 亿参数,图像尺寸 384,在 WebLi 上预训练。
siglip_so400m_patch14_224 877.36M 8.77 亿参数,图像尺寸 224,形状优化版本,在 WebLi 上预训练。
siglip_so400m_patch14_384 877.96M 8.77 亿参数,图像尺寸 384,形状优化版本,在 WebLi 上预训练。
siglip2_large_patch16_256 881.53M 8.81 亿参数,补丁大小 16,图像尺寸 256,在 WebLi 上预训练。
siglip2_large_patch16_384 881.86M 8.81 亿参数,补丁大小 16,图像尺寸 384,在 WebLi 上预训练。
siglip2_large_patch16_512 882.31M 8.82 亿参数,补丁大小 16,图像尺寸 512,在 WebLi 上预训练。
siglip_so400m_patch16_256_i18n 1.13B 11 亿参数,图像尺寸 256,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch14_224 1.14B 11 亿参数,补丁大小 14,图像尺寸 224,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch16_256 1.14B 11 亿参数,补丁大小 16,图像尺寸 256,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch14_384 1.14B 11 亿参数,补丁大小 14,图像尺寸 224,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch16_384 1.14B 11 亿参数,补丁大小 16,图像尺寸 384,形状优化版本,在 WebLi 上预训练。
siglip2_so400m_patch16_512 1.14B 11 亿参数,补丁大小 16,图像尺寸 512,形状优化版本,在 WebLi 上预训练。
siglip2_giant_opt_patch16_256 1.87B 18 亿参数,补丁大小 16,图像尺寸 256,在 WebLi 上预训练。
siglip2_giant_opt_patch16_384 1.87B 18 亿参数,补丁大小 16,图像尺寸 384,在 WebLi 上预训练。
vgg_11_imagenet 9.22M 11 层 VGG 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
vgg_13_imagenet 9.40M 13 层 VGG 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
vgg_16_imagenet 14.71M 16 层 VGG 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
vgg_19_imagenet 20.02M 19 层 VGG 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。
vit_base_patch16_224_imagenet 85.80M ViT-B16 模型,在 224x224 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_base_patch16_224_imagenet21k 85.80M ViT-B16 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。
vit_base_patch16_384_imagenet 86.09M ViT-B16 模型,在 384x384 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_base_patch32_224_imagenet21k 87.46M ViT-B32 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。
vit_base_patch32_384_imagenet 87.53M ViT-B32 模型,在 384x384 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_large_patch16_224_imagenet 303.30M ViT-L16 模型,在 224x224 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_large_patch16_224_imagenet21k 303.30M ViT-L16 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。
vit_large_patch16_384_imagenet 303.69M ViT-L16 模型,在 384x384 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_large_patch32_224_imagenet21k 305.51M ViT-L32 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。
vit_large_patch32_384_imagenet 305.61M ViT-L32 模型,在 384x384 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_huge_patch14_224_imagenet21k 630.76M ViT-H14 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。
xception_41_imagenet 20.86M 41 层 Xception 模型,在 ImageNet 1k 上预训练。