DebertaV3TextClassifierPreprocessor
类keras_hub.models.DebertaV3TextClassifierPreprocessor(
tokenizer, sequence_length=512, truncate="round_robin", **kwargs
)
一种用于标记化和打包输入的 DeBERTa 预处理层。
此预处理层将执行三项操作
tokenizer
对任意数量的输入片段进行标记化。keras_hub.layers.MultiSegmentPacker
并使用适当的 "[CLS]"
、"[SEP]"
和 "[PAD]"
标记将输入打包在一起。"token_ids"
和 "padding_mask"
键的字典,可以直接传递给 DeBERTa 模型。此层可以直接与 tf.data.Dataset.map
一起使用,以预处理 keras.Model.fit
使用的 (x, y, sample_weight)
格式的字符串数据。
此层的调用方法接受三个参数:x
、y
和 sample_weight
。x
可以是表示单个片段的 python 字符串或张量,表示一批单个片段的 python 字符串列表,或者表示要打包在一起的多个片段的张量列表。y
和 sample_weight
都是可选的,可以是任何格式,并且会原样传递。
在使用 tf.data
映射未标记的字符串片段元组时,应特别注意。tf.data.Dataset.map
会将此元组直接解包到此层的调用参数中,而不是将所有参数转发给 x
。为了处理这种情况,建议显式调用该层,例如 ds.map(lambda seg1, seg2: preprocessor(x=(seg1, seg2)))
。
参数
keras_hub.models.DebertaV3Tokenizer
实例。sequence_length
的算法。该值可以是 round_robin
或 waterfall
"round_robin"
:可用空间以轮循方式一次为一个标记分配给仍需要空间的输入,直到达到限制。"waterfall"
:预算分配使用“瀑布”算法进行,该算法以从左到右的方式分配配额,并填充存储桶直到预算耗尽。它支持任意数量的片段。示例
直接在数据上调用该层。
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"deberta_v3_base_en"
)
# Tokenize and pack a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize a batch of single sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Preprocess a batch of sentence pairs.
# When handling multiple sequences, always convert to tensors first!
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
preprocessor((first, second))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=9,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
pad_piece="[PAD]",
bos_piece="[CLS]",
eos_piece="[SEP]",
unk_piece="[UNK]",
)
tokenizer = keras_hub.models.DebertaV3Tokenizer(
proto=bytes_io.getvalue(),
)
preprocessor = keras_hub.models.DebertaV3TextClassifierPreprocessor(
tokenizer
)
preprocessor("The quick brown fox jumped.")
使用 tf.data.Dataset
进行映射。
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"deberta_v3_base_en"
)
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
label = tf.constant([1, 1])
# Map labeled single sentences.
ds = tf.data.Dataset.from_tensor_slices((first, label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled single sentences.
ds = tf.data.Dataset.from_tensor_slices(first)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map labeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices((first, second))
# Watch out for tf.data's default unpacking of tuples here!
# Best to invoke the `preprocessor` directly in this case.
ds = ds.map(
lambda first, second: preprocessor(x=(first, second)),
num_parallel_calls=tf.data.AUTOTUNE,
)
from_preset
方法DebertaV3TextClassifierPreprocessor.from_preset(
preset, config_file="preprocessor.json", **kwargs
)
从模型预设实例化一个 keras_hub.models.Preprocessor
。
预设是用于保存和加载预训练模型的配置、权重和其他文件资产的目录。preset
可以作为以下之一传递
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Preprocessor
子类,您可以运行 cls.presets.keys()
来列出该类上所有可用的内置预设。
由于给定模型通常有多个预处理类,因此应在特定子类上调用此方法,例如 keras_hub.models.BertTextClassifierPreprocessor.from_preset()
。
参数
示例
# Load a preprocessor for Gemma generation.
preprocessor = keras_hub.models.CausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_hub.models.TextClassifierPreprocessor.from_preset(
"bert_base_en",
)
预设 | 参数 | 描述 |
---|---|---|
deberta_v3_extra_small_en | 70.68M | 维护大小写的 12 层 DeBERTaV3 模型。在英文维基百科、BookCorpus 和 OpenWebText 上训练。 |
deberta_v3_small_en | 141.30M | 维护大小写的 6 层 DeBERTaV3 模型。在英文维基百科、BookCorpus 和 OpenWebText 上训练。 |
deberta_v3_base_en | 183.83M | 维护大小写的 12 层 DeBERTaV3 模型。在英文维基百科、BookCorpus 和 OpenWebText 上训练。 |
deberta_v3_base_multi | 278.22M | 维护大小写的 12 层 DeBERTaV3 模型。在 2.5TB 的多语言 CC100 数据集上训练。 |
deberta_v3_large_en | 434.01M | 维护大小写的 24 层 DeBERTaV3 模型。在英文维基百科、BookCorpus 和 OpenWebText 上训练。 |
tokenizer
属性keras_hub.models.DebertaV3TextClassifierPreprocessor.tokenizer
用于标记化字符串的分词器。