CLIPImageConverter
类keras_hub.layers.CLIPImageConverter(
image_size=None,
scale=None,
offset=None,
crop_to_aspect_ratio=True,
pad_to_aspect_ratio=False,
interpolation="bilinear",
antialias=False,
bounding_box_format="yxyx",
data_format=None,
**kwargs
)
将原始图像预处理为适合模型的输入。
该类将原始图像转换为适合模型的输入。此转换按以下步骤进行:
该层将接收一个 channels last 或 channels first 格式的原始图像张量作为输入,并输出一个用于建模的预处理图像输入。该张量可以是批处理的(秩为 4),也可以是非批处理的(秩为 3)。
此层可与 from_preset()
构造函数配合使用,以加载一个层,该层将为特定预训练模型重新缩放和调整图像大小。以这种方式使用该层,可以编写无需在模型检查点之间切换时更新的预处理代码。
参数
None
。应用于输入的比例。如果 scale
是单个浮点数,则整个输入将乘以 scale
。如果 scale
是元组,则假定它包含与输入图像的每个通道相乘的每个通道比例值。如果 scale
为 None
,则不应用缩放。None
。应用于输入的偏移量。如果 offset
是单个浮点数,则整个输入将与 offset
相加。如果 offset
是元组,则假定它包含与输入图像的每个通道相加的每个通道偏移值。如果 offset
为 None
,则不应用缩放。True
,则在不扭曲宽高比的情况下调整图像大小。当原始宽高比与目标宽高比不同时,输出图像将被裁剪,以返回图像中最大可能的窗口(大小为 (height, width)
),该窗口与目标宽高比匹配。默认情况下 (crop_to_aspect_ratio=False
),可能不保留宽高比。"xyxy"
、"rel_xyxy"
、"xywh"
、"center_xywh"
、"yxyx"
、"rel_yxyx"
中的一个。指定将与图像一起调整为 image_size
的边界框的格式。要将边界框传递到此层,请在调用该层时传递一个带有键 "images"
和 "bounding_boxes"
的字典。"channels_last"
或 "channels_first"
。输入中的维度顺序。"channels_last"
对应于形状为 (batch, height, width, channels)
的输入,而 "channels_first"
对应于形状为 (batch, channels, height, width)
的输入。它默认为 Keras 配置文件 ~/.keras/keras.json
中找到的 image_data_format
值。如果您从未设置它,则默认为 "channels_last"
。示例
# Resize raw images and scale them to [0, 1].
converter = keras_hub.layers.ImageConverter(
image_size=(128, 128),
scale=1. / 255,
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
# Resize images to the specific size needed for a PaliGemma preset.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_224"
)
converter(np.random.randint(0, 256, size=(2, 512, 512, 3)))
from_preset
方法CLIPImageConverter.from_preset(preset, **kwargs)
从模型预设实例化一个 `keras_hub.layers.ImageConverter`。
预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset
可以作为以下之一传递:
您可以运行 `cls.presets.keys()` 来列出该类上所有可用的内置预设。
参数
示例
batch = np.random.randint(0, 256, size=(2, 512, 512, 3))
# Resize images for `"pali_gemma_3b_224"`.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_224"
)
converter(batch) # # Output shape (2, 224, 224, 3)
# Resize images for `"pali_gemma_3b_448"` without cropping.
converter = keras_hub.layers.ImageConverter.from_preset(
"pali_gemma_3b_448",
crop_to_aspect_ratio=False,
)
converter(batch) # # Output shape (2, 448, 448, 3)
预设 | 参数 | 描述 |
---|---|---|
clip_vit_base_patch16 | 149.62M | 1.5 亿参数,视觉 12 层,文本 12 层,补丁大小 16 的 CLIP 模型。 |
clip_vit_base_patch32 | 151.28M | 1.51 亿参数,视觉 12 层,文本 12 层,补丁大小 32 的 CLIP 模型。 |
clip_vit_b_32_laion2b_s34b_b79k | 151.28M | 1.51 亿参数,视觉 12 层,文本 12 层,补丁大小 32 的 Open CLIP 模型。 |
clip_vit_large_patch14 | 427.62M | 4.28 亿参数,视觉 24 层,文本 12 层,补丁大小 14 的 CLIP 模型。 |
clip_vit_large_patch14_336 | 427.94M | 4.28 亿参数,视觉 24 层,文本 12 层,补丁大小 14,图像大小 336 的 CLIP 模型。 |
clip_vit_h_14_laion2b_s32b_b79k | 986.11M | 9.86 亿参数,视觉 32 层,文本 24 层,补丁大小 14 的 Open CLIP 模型。 |
clip_vit_g_14_laion2b_s12b_b42k | 1.37B | 14 亿参数,视觉 40 层,文本 24 层,补丁大小 14 的 Open CLIP 模型。 |
clip_vit_bigg_14_laion2b_39b_b160k | 2.54B | 25 亿参数,视觉 48 层,文本 32 层,补丁大小 14 的 Open CLIP 模型。 |