Seq2SeqLM

[源代码]

Seq2SeqLM

keras_hub.models.Seq2SeqLM()

序列到序列语言建模任务的基类。

Seq2SeqLM 任务封装了一个 keras_hub.models.Backbone 和一个 keras_hub.models.Preprocessor,以创建一个模型,该模型可在序列到序列设置中,当生成受额外输入序列的条件约束时,用于生成和生成式微调。

Seq2SeqLM 任务提供了一个额外的高级 generate() 函数,可用于逐个标记地自回归地采样输出序列。Seq2SeqLM 类的 compile() 方法包含一个额外的 sampler 参数,可用于传递一个 keras_hub.samplers.Sampler 来控制如何采样预测的分布。

调用 fit() 时,每个输入应包含一个输入序列和一个输出序列。模型将被训练为逐个标记地预测输出序列,使用因果掩码,类似于 keras_hub.models.CausalLM 任务。与 CausalLM 任务不同的是,必须传入一个输入序列,并且输出序列中的所有标记都可以完全关注该输入序列。

所有 Seq2SeqLM 任务都包含一个 from_preset() 构造函数,可用于加载预训练的配置和权重。

示例

# Load a Bart backbone with pre-trained weights.
seq_2_seq_lm = keras_hub.models.Seq2SeqLM.from_preset(
    "bart_base_en",
)
seq_2_seq_lm.compile(sampler="top_k")
# Generate conditioned on the `"The quick brown fox."` as an input sequence.
seq_2_seq_lm.generate("The quick brown fox.", max_length=30)

[源代码]

from_preset 方法

Seq2SeqLM.from_preset(preset, load_weights=True, **kwargs)

从模型预设实例化一个 keras_hub.models.Task

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

对于任何 Task 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

此构造函数可以通过两种方式调用。一种方式是从特定任务的基类(如 keras_hub.models.CausalLM.from_preset())调用,另一种方式是从模型类(如 keras_hub.models.BertTextClassifier.from_preset())调用。如果从基类调用,返回对象的子类将从预设目录中的配置推断出来。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights: 布尔值。如果为 True,已保存的权重将被加载到模型架构中。如果为 False,所有权重将被随机初始化。

示例

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)

# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
预设 参数 描述
bart_base_en 139.42M 6 层 BART 模型,大小写保持不变。在 BookCorpus、英文维基百科和 CommonCrawl 上训练。
bart_large_en 406.29M 12 层 BART 模型,大小写保持不变。在 BookCorpus、英文维基百科和 CommonCrawl 上训练。
bart_large_en_cnn 406.29M 在 CNN+DM 摘要数据集上微调的 bart_large_en 骨干模型。
moonshine_tiny_en 27.09M 用于英语语音识别的 Moonshine tiny 模型。由 Useful Sensors 开发,用于实时转录。
moonshine_base_en 61.51M 用于英语语音识别的 Moonshine base 模型。由 Useful Sensors 开发,用于实时转录。
t5gemma_s_s_ul2 312.52M T5Gemma S/S 模型,具有小型编码器和小型解码器,被适配为 UL2 模型。
t5gemma_s_s_prefixlm 312.52M T5Gemma S/S 模型,具有小型编码器和小型解码器,被适配为前缀语言模型。
t5gemma_s_s_ul2_it 312.52M T5Gemma S/S 模型,具有小型编码器和小型解码器,被适配为 UL2 模型,并进行了指令遵循微调。
t5gemma_s_s_prefixlm_it 312.52M T5Gemma S/S 模型,具有小型编码器和小型解码器,被适配为前缀语言模型,并进行了指令遵循微调。
t5gemma_b_b_ul2 591.49M T5Gemma B/B 模型,具有基础编码器和基础解码器,被适配为 UL2 模型。
t5gemma_b_b_prefixlm 591.49M T5Gemma B/B 模型,具有基础编码器和基础解码器,被适配为前缀语言模型。
t5gemma_b_b_ul2_it 591.49M T5Gemma B/B 模型,具有基础编码器和基础解码器,被适配为 UL2 模型,并进行了指令遵循微调。
t5gemma_b_b_prefixlm_it 591.49M T5Gemma B/B 模型,具有基础编码器和基础解码器,被适配为前缀语言模型,并进行了指令遵循微调。
t5gemma_l_l_ul2 1.24B T5Gemma L/L 模型,具有大型编码器和大型解码器,被适配为 UL2 模型。
t5gemma_l_l_prefixlm 1.24B T5Gemma L/L 模型,具有大型编码器和大型解码器,被适配为前缀语言模型。
t5gemma_l_l_ul2_it 1.24B T5Gemma L/L 模型,具有大型编码器和大型解码器,被适配为 UL2 模型,并进行了指令遵循微调。
t5gemma_l_l_prefixlm_it 1.24B T5Gemma L/L 模型,具有大型编码器和大型解码器,被适配为前缀语言模型,并进行了指令遵循微调。
t5gemma_ml_ml_ul2 2.20B T5Gemma ML/ML 模型,具有中大型编码器和中大型解码器,被适配为 UL2 模型。
t5gemma_ml_ml_prefixlm 2.20B T5Gemma ML/ML 模型,具有中大型编码器和中大型解码器,被适配为前缀语言模型。
t5gemma_ml_ml_ul2_it 2.20B T5Gemma ML/ML 模型,具有中大型编码器和中大型解码器,被适配为 UL2 模型,并进行了指令遵循微调。
t5gemma_ml_ml_prefixlm_it 2.20B T5Gemma ML/ML 模型,具有中大型编码器和中大型解码器,被适配为前缀语言模型,并进行了指令遵循微调。
t5gemma_xl_xl_ul2 3.77B T5Gemma XL/XL 模型,具有超大型编码器和超大型解码器,被适配为 UL2 模型。
t5gemma_xl_xl_prefixlm 3.77B T5Gemma XL/XL 模型,具有超大型编码器和超大型解码器,被适配为前缀语言模型。
t5gemma_xl_xl_ul2_it 3.77B T5Gemma XL/XL 模型,具有超大型编码器和超大型解码器,被适配为 UL2 模型,并进行了指令遵循微调。
t5gemma_xl_xl_prefixlm_it 3.77B T5Gemma XL/XL 模型,具有超大型编码器和超大型解码器,被适配为前缀语言模型,并进行了指令遵循微调。
t5gemma_2b_2b_ul2 5.60B T5Gemma 2B/2B 模型,具有 20 亿参数的编码器和 20 亿参数的解码器,被适配为 UL2 模型。
t5gemma_2b_2b_prefixlm 5.60B T5Gemma 2B/2B 模型,具有 20 亿参数的编码器和 20 亿参数的解码器,被适配为前缀语言模型。
t5gemma_2b_2b_ul2_it 5.60B T5Gemma 2B/2B 模型,具有 20 亿参数的编码器和 20 亿参数的解码器,被适配为 UL2 模型,并进行了指令遵循微调。
t5gemma_2b_2b_prefixlm_it 5.60B T5Gemma 2B/2B 模型,具有 20 亿参数的编码器和 20 亿参数的解码器,被适配为前缀语言模型,并进行了指令遵循微调。
t5gemma_9b_2b_ul2 12.29B T5Gemma 9B/2B 模型,具有 90 亿参数的编码器和 20 亿参数的解码器,被适配为 UL2 模型。
t5gemma_9b_2b_prefixlm 12.29B T5Gemma 9B/2B 模型,具有 90 亿参数的编码器和 20 亿参数的解码器,被适配为前缀语言模型。
t5gemma_9b_2b_ul2_it 12.29B T5Gemma 9B/2B 模型,具有 90 亿参数的编码器和 20 亿参数的解码器,被适配为 UL2 模型,并进行了指令遵循微调。
t5gemma_9b_2b_prefixlm_it 12.29B T5Gemma 9B/2B 模型,具有 90 亿参数的编码器和 20 亿参数的解码器,被适配为前缀语言模型,并进行了指令遵循微调。
t5gemma_9b_9b_ul2 20.33B T5Gemma 9B/9B 模型,具有 90 亿参数的编码器和 90 亿参数的解码器,被适配为 UL2 模型。
t5gemma_9b_9b_prefixlm 20.33B T5Gemma 9B/9B 模型,具有 90 亿参数的编码器和 90 亿参数的解码器,被适配为前缀语言模型。
t5gemma_9b_9b_ul2_it 20.33B T5Gemma 9B/9B 模型,具有 90 亿参数的编码器和 90 亿参数的解码器,被适配为 UL2 模型,并进行了指令遵循微调。
t5gemma_9b_9b_prefixlm_it 20.33B T5Gemma 9B/9B 模型,具有 90 亿参数的编码器和 90 亿参数的解码器,被适配为前缀语言模型,并进行了指令遵循微调。

[源代码]

compile 方法

Seq2SeqLM.compile(
    optimizer="auto", loss="auto", weighted_metrics="auto", sampler="top_k", **kwargs
)

为训练和生成配置 CausalLM 任务。

CausalLM 任务通过为 optimizerlossweighted_metrics 提供默认值来扩展 keras.Model.compile 的默认编译签名。要覆盖这些默认值,请在编译期间为这些参数传递任何值。

CausalLM 任务在 compile 中添加了一个新的 sampler,可用于控制 generate 函数使用的采样策略。

请注意,由于训练输入包含从损失中排除的填充标记,因此使用 weighted_metrics 而不是 metrics 进行编译几乎总是一个好主意。

参数

  • optimizer: "auto"、优化器名称或 keras.Optimizer 实例。默认为 "auto",它会为给定的模型和任务使用默认优化器。有关可能的 optimizer 值的更多信息,请参阅 keras.Model.compilekeras.optimizers
  • loss"auto"、一个损失名称或一个 keras.losses.Loss 实例。默认为 "auto",对于标记分类 CausalLM 任务,将应用 keras.losses.SparseCategoricalCrossentropy 损失。有关可能的 loss 值,请参阅 keras.Model.compilekeras.losses
  • weighted_metrics"auto" 或要在训练和测试期间由模型评估的指标列表。默认为 "auto",将应用 keras.metrics.SparseCategoricalAccuracy 来跟踪模型在猜测掩码标记值方面的准确性。有关可能的 weighted_metrics 值,请参阅 keras.Model.compilekeras.metrics
  • sampler:一个采样器名称或一个 keras_hub.samplers.Sampler 实例。配置 generate() 调用期间使用的采样方法。有关内置采样策略的完整列表,请参阅 keras_hub.samplers
  • **kwargs:有关 compile 方法支持的完整参数列表,请参阅 keras.Model.compile

[源代码]

generate 方法

Seq2SeqLM.generate(
    inputs, max_length=None, stop_token_ids="auto", strip_prompt=False
)

根据提示 inputs 生成文本。

此方法根据给定的 inputs 生成文本。用于生成的采样方法可以通过 compile() 方法设置。

如果 inputs 是一个 tf.data.Dataset,输出将“逐批”生成并连接起来。否则,所有输入将被视为单个批次处理。

如果模型附加了 preprocessorinputs 将在 generate() 函数内部进行预处理,并且应与 preprocessor 层期望的结构匹配(通常是原始字符串)。如果未附加 preprocessor,则 inputs 应与 backbone 期望的结构匹配。请参阅上面的示例用法以了解每个的演示。

参数

  • inputs: python 数据、张量数据或 tf.data.Dataset。如果模型附加了 preprocessorinputs 应与 preprocessor 层期望的结构匹配。如果未附加 preprocessorinputs 应与 backbone 模型期望的结构匹配。
  • max_length: 可选。int。生成序列的最大长度。将默认为 preprocessor 配置的 sequence_length 最大值。如果 preprocessorNone,则 inputs 应填充到所需的最大长度,并且此参数将被忽略。
  • stop_token_ids: 可选。None、"auto" 或 token ID 的元组。默认为 "auto",它使用 preprocessor.tokenizer.end_token_id。不指定处理器将产生错误。None 在生成 max_length 个 token 后停止生成。您也可以指定一个 token ID 列表,模型应在此停止。请注意,token 序列中的每个序列都将被解释为一个停止 token,不支持多 token 停止序列。
  • strip_prompt:可选。默认情况下,generate() 返回完整的提示及其后由模型生成的补全内容。如果此选项设置为 True,则只返回新生成的文本。

[源代码]

save_to_preset 方法

Seq2SeqLM.save_to_preset(preset_dir, max_shard_size=10)

将任务保存到预设目录。

参数

  • preset_dir:本地模型预设目录的路径。
  • max_shard_sizeintfloat。每个分片文件的最大大小(以 GB 为单位)。如果为 None,则不进行分片。默认为 10

preprocessor 属性

keras_hub.models.Seq2SeqLM.preprocessor

用于预处理输入的 keras_hub.models.Preprocessor 层。


backbone 属性

keras_hub.models.Seq2SeqLM.backbone

一个具有核心架构的 keras_hub.models.Backbone 模型。