作者: fchollet
创建日期 2020/05/16
最后修改 2023/11/16
描述: 助你调试 Keras 代码的四个简单技巧。
通常来说,在 Keras 中做任何事情都 无需编写代码:无论是实现新型 GAN 还是最新的图像分割卷积网络架构,你通常都可以直接调用内置方法。由于所有内置方法都执行广泛的输入验证检查,你将几乎无需进行调试。完全由内置层构建的函数式 API 模型通常一次就能成功运行——只要你能编译它,它就能运行。
然而,有时你需要深入研究并编写自己的代码。以下是一些常见示例:
Layer
子类。Metric
子类。Model
上实现自定义的 train_step
。本文档提供了一些简单的技巧,帮助你在这些情况下进行调试。
如果你创建了任何可能无法按预期工作的对象,不要直接将其放入端到端流程中,看着火花四溅。相反,先单独测试你的自定义对象。这似乎显而易见——但你会惊讶地发现人们常常没有从这里开始。
fit()
。首先在一些测试数据上调用你的层。这是一个简单的示例。让我们编写一个带有 bug 的自定义层。
import os
# The last example uses tf.GradientTape and thus requires TensorFlow.
# However, all tips here are applicable with all backends.
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
from keras import layers
from keras import ops
import numpy as np
import tensorflow as tf
class MyAntirectifier(layers.Layer):
def build(self, input_shape):
output_dim = input_shape[-1]
self.kernel = self.add_weight(
shape=(output_dim * 2, output_dim),
initializer="he_normal",
name="kernel",
trainable=True,
)
def call(self, inputs):
# Take the positive part of the input
pos = ops.relu(inputs)
# Take the negative part of the input
neg = ops.relu(-inputs)
# Concatenate the positive and negative parts
concatenated = ops.concatenate([pos, neg], axis=0)
# Project the concatenation down to the same dimensionality as the input
return ops.matmul(concatenated, self.kernel)
现在,我们不直接将其用于端到端模型,而是尝试在一些测试数据上调用该层。
x = tf.random.normal(shape=(2, 5))
y = MyAntirectifier()(x)
我们得到以下错误:
...
1 x = tf.random.normal(shape=(2, 5))
----> 2 y = MyAntirectifier()(x)
...
17 neg = tf.nn.relu(-inputs)
18 concatenated = tf.concat([pos, neg], axis=0)
---> 19 return tf.matmul(concatenated, self.kernel)
...
InvalidArgumentError: Matrix size-incompatible: In[0]: [4,5], In[1]: [10,5] [Op:MatMul]
看来我们的 matmul
操作中的输入张量形状可能不正确。我们添加一个 print 语句来检查实际形状。
class MyAntirectifier(layers.Layer):
def build(self, input_shape):
output_dim = input_shape[-1]
self.kernel = self.add_weight(
shape=(output_dim * 2, output_dim),
initializer="he_normal",
name="kernel",
trainable=True,
)
def call(self, inputs):
pos = ops.relu(inputs)
neg = ops.relu(-inputs)
print("pos.shape:", pos.shape)
print("neg.shape:", neg.shape)
concatenated = ops.concatenate([pos, neg], axis=0)
print("concatenated.shape:", concatenated.shape)
print("kernel.shape:", self.kernel.shape)
return ops.matmul(concatenated, self.kernel)
我们得到以下输出:
pos.shape: (2, 5)
neg.shape: (2, 5)
concatenated.shape: (4, 5)
kernel.shape: (10, 5)
原来我们在 concat
操作中使用了错误的轴!我们应该沿特征轴 1(而不是批次轴 0)连接 neg
和 pos
。这是正确的版本:
class MyAntirectifier(layers.Layer):
def build(self, input_shape):
output_dim = input_shape[-1]
self.kernel = self.add_weight(
shape=(output_dim * 2, output_dim),
initializer="he_normal",
name="kernel",
trainable=True,
)
def call(self, inputs):
pos = ops.relu(inputs)
neg = ops.relu(-inputs)
print("pos.shape:", pos.shape)
print("neg.shape:", neg.shape)
concatenated = ops.concatenate([pos, neg], axis=1)
print("concatenated.shape:", concatenated.shape)
print("kernel.shape:", self.kernel.shape)
return ops.matmul(concatenated, self.kernel)
现在我们的代码可以正常工作了。
x = keras.random.normal(shape=(2, 5))
y = MyAntirectifier()(x)
pos.shape: (2, 5)
neg.shape: (2, 5)
concatenated.shape: (2, 10)
kernel.shape: (10, 5)
model.summary()
和 plot_model()
检查层输出形状如果你正在处理复杂的网络拓扑结构,你需要一种方法来可视化你的层是如何连接的以及它们如何转换通过它们的数据。
这是一个示例。考虑这个具有三个输入和两个输出的模型(摘自函数式 API 指南):
num_tags = 12 # Number of unique issue tags
num_words = 10000 # Size of vocabulary obtained when preprocessing text data
num_departments = 4 # Number of departments for predictions
title_input = keras.Input(
shape=(None,), name="title"
) # Variable-length sequence of ints
body_input = keras.Input(shape=(None,), name="body") # Variable-length sequence of ints
tags_input = keras.Input(
shape=(num_tags,), name="tags"
) # Binary vectors of size `num_tags`
# Embed each word in the title into a 64-dimensional vector
title_features = layers.Embedding(num_words, 64)(title_input)
# Embed each word in the text into a 64-dimensional vector
body_features = layers.Embedding(num_words, 64)(body_input)
# Reduce sequence of embedded words in the title into a single 128-dimensional vector
title_features = layers.LSTM(128)(title_features)
# Reduce sequence of embedded words in the body into a single 32-dimensional vector
body_features = layers.LSTM(32)(body_features)
# Merge all available features into a single large vector via concatenation
x = layers.concatenate([title_features, body_features, tags_input])
# Stick a logistic regression for priority prediction on top of the features
priority_pred = layers.Dense(1, name="priority")(x)
# Stick a department classifier on top of the features
department_pred = layers.Dense(num_departments, name="department")(x)
# Instantiate an end-to-end model predicting both priority and department
model = keras.Model(
inputs=[title_input, body_input, tags_input],
outputs=[priority_pred, department_pred],
)
调用 summary()
可以帮助你检查每个层的输出形状:
model.summary()
Model: "functional_1"
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃ ┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━┩ │ title (InputLayer) │ (None, None) │ 0 │ - │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ body (InputLayer) │ (None, None) │ 0 │ - │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ embedding │ (None, None, 64) │ 640,000 │ title[0][0] │ │ (Embedding) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ embedding_1 │ (None, None, 64) │ 640,000 │ body[0][0] │ │ (Embedding) │ │ │ │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ lstm (LSTM) │ (None, 128) │ 98,816 │ embedding[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ lstm_1 (LSTM) │ (None, 32) │ 12,416 │ embedding_1[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ tags (InputLayer) │ (None, 12) │ 0 │ - │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ concatenate │ (None, 172) │ 0 │ lstm[0][0], │ │ (Concatenate) │ │ │ lstm_1[0][0], │ │ │ │ │ tags[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ priority (Dense) │ (None, 1) │ 173 │ concatenate[0][0] │ ├─────────────────────┼───────────────────┼─────────┼──────────────────────┤ │ department (Dense) │ (None, 4) │ 692 │ concatenate[0][0] │ └─────────────────────┴───────────────────┴─────────┴──────────────────────┘
Total params: 1,392,097 (5.31 MB)
Trainable params: 1,392,097 (5.31 MB)
Non-trainable params: 0 (0.00 B)
你还可以使用 plot_model
可视化整个网络拓扑结构以及输出形状:
keras.utils.plot_model(model, show_shapes=True)
有了这个图,任何连接级别的错误都会立即显而易见。
fit()
期间发生的情况,使用 run_eagerly=True
fit()
方法速度很快:它运行一个经过充分优化、完全编译的计算图。这对性能很有帮助,但这也意味着你正在执行的代码并非你编写的 Python 代码。这在调试时可能会出现问题。你可能还记得,Python 很慢——所以我们将其用作暂存语言,而不是执行语言。
幸运的是,有一种简单的方法可以以“调试模式”完全即时地运行你的代码:将 run_eagerly=True
传递给 compile()
。现在你的 fit()
调用将逐行执行,没有任何优化。这会更慢,但可以打印中间张量的值,或使用 Python 调试器。非常适合调试。
这是一个基本示例:让我们编写一个非常简单的模型,它带有一个自定义的 train_step()
方法。我们的模型只是实现了梯度下降,但它没有使用一阶梯度,而是结合使用了一阶和二阶梯度。到目前为止很简单。
你能找出我们做错了什么吗?
class MyModel(keras.Model):
def train_step(self, data):
inputs, targets = data
trainable_vars = self.trainable_variables
with tf.GradientTape() as tape2:
with tf.GradientTape() as tape1:
y_pred = self(inputs, training=True) # Forward pass
# Compute the loss value
# (the loss function is configured in `compile()`)
loss = self.compute_loss(y=targets, y_pred=y_pred)
# Compute first-order gradients
dl_dw = tape1.gradient(loss, trainable_vars)
# Compute second-order gradients
d2l_dw2 = tape2.gradient(dl_dw, trainable_vars)
# Combine first-order and second-order gradients
grads = [0.5 * w1 + 0.5 * w2 for (w1, w2) in zip(d2l_dw2, dl_dw)]
# Update weights
self.optimizer.apply_gradients(zip(grads, trainable_vars))
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(targets, y_pred)
# Return a dict mapping metric names to current value
return {m.name: m.result() for m in self.metrics}
让我们使用这个自定义损失函数在 MNIST 数据集上训练一个单层模型。
我们随便选择了一个批次大小 1024 和学习率 0.1。一般的想法是使用比平时更大的批次和更大的学习率,因为我们“改进的”梯度应该能更快地收敛。
# Construct an instance of MyModel
def get_model():
inputs = keras.Input(shape=(784,))
intermediate = layers.Dense(256, activation="relu")(inputs)
outputs = layers.Dense(10, activation="softmax")(intermediate)
model = MyModel(inputs, outputs)
return model
# Prepare data
(x_train, y_train), _ = keras.datasets.mnist.load_data()
x_train = np.reshape(x_train, (-1, 784)) / 255
model = get_model()
model.compile(
optimizer=keras.optimizers.SGD(learning_rate=1e-2),
loss="sparse_categorical_crossentropy",
)
model.fit(x_train, y_train, epochs=3, batch_size=1024, validation_split=0.1)
Epoch 1/3
53/53 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step - loss: 2.4264 - val_loss: 2.3036
Epoch 2/3
53/53 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step - loss: 2.3111 - val_loss: 2.3387
Epoch 3/3
53/53 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step - loss: 2.3442 - val_loss: 2.3697
<keras.src.callbacks.history.History at 0x29a899600>
哦不,它没有收敛!某些地方没有按计划工作。
是时候逐步打印出我们的梯度发生了什么了。
我们在 train_step
方法中添加了各种 print
语句,并确保将 run_eagerly=True
传递给 compile()
,以便逐行即时运行代码。
class MyModel(keras.Model):
def train_step(self, data):
print()
print("----Start of step: %d" % (self.step_counter,))
self.step_counter += 1
inputs, targets = data
trainable_vars = self.trainable_variables
with tf.GradientTape() as tape2:
with tf.GradientTape() as tape1:
y_pred = self(inputs, training=True) # Forward pass
# Compute the loss value
# (the loss function is configured in `compile()`)
loss = self.compute_loss(y=targets, y_pred=y_pred)
# Compute first-order gradients
dl_dw = tape1.gradient(loss, trainable_vars)
# Compute second-order gradients
d2l_dw2 = tape2.gradient(dl_dw, trainable_vars)
print("Max of dl_dw[0]: %.4f" % tf.reduce_max(dl_dw[0]))
print("Min of dl_dw[0]: %.4f" % tf.reduce_min(dl_dw[0]))
print("Mean of dl_dw[0]: %.4f" % tf.reduce_mean(dl_dw[0]))
print("-")
print("Max of d2l_dw2[0]: %.4f" % tf.reduce_max(d2l_dw2[0]))
print("Min of d2l_dw2[0]: %.4f" % tf.reduce_min(d2l_dw2[0]))
print("Mean of d2l_dw2[0]: %.4f" % tf.reduce_mean(d2l_dw2[0]))
# Combine first-order and second-order gradients
grads = [0.5 * w1 + 0.5 * w2 for (w1, w2) in zip(d2l_dw2, dl_dw)]
# Update weights
self.optimizer.apply_gradients(zip(grads, trainable_vars))
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(targets, y_pred)
# Return a dict mapping metric names to current value
return {m.name: m.result() for m in self.metrics}
model = get_model()
model.compile(
optimizer=keras.optimizers.SGD(learning_rate=1e-2),
loss="sparse_categorical_crossentropy",
metrics=["sparse_categorical_accuracy"],
run_eagerly=True,
)
model.step_counter = 0
# We pass epochs=1 and steps_per_epoch=10 to only run 10 steps of training.
model.fit(x_train, y_train, epochs=1, batch_size=1024, verbose=0, steps_per_epoch=10)
----Start of step: 0
Max of dl_dw[0]: 0.0332
Min of dl_dw[0]: -0.0288
Mean of dl_dw[0]: 0.0003
-
Max of d2l_dw2[0]: 5.2691
Min of d2l_dw2[0]: -2.6968
Mean of d2l_dw2[0]: 0.0981
----Start of step: 1
Max of dl_dw[0]: 0.0445
Min of dl_dw[0]: -0.0169
Mean of dl_dw[0]: 0.0013
-
Max of d2l_dw2[0]: 3.3575
Min of d2l_dw2[0]: -1.9024
Mean of d2l_dw2[0]: 0.0726
----Start of step: 2
Max of dl_dw[0]: 0.0669
Min of dl_dw[0]: -0.0153
Mean of dl_dw[0]: 0.0013
-
Max of d2l_dw2[0]: 5.0661
Min of d2l_dw2[0]: -1.7168
Mean of d2l_dw2[0]: 0.0809
----Start of step: 3
Max of dl_dw[0]: 0.0545
Min of dl_dw[0]: -0.0125
Mean of dl_dw[0]: 0.0008
-
Max of d2l_dw2[0]: 6.5223
Min of d2l_dw2[0]: -0.6604
Mean of d2l_dw2[0]: 0.0991
----Start of step: 4
Max of dl_dw[0]: 0.0247
Min of dl_dw[0]: -0.0152
Mean of dl_dw[0]: -0.0001
-
Max of d2l_dw2[0]: 2.8030
Min of d2l_dw2[0]: -0.1156
Mean of d2l_dw2[0]: 0.0321
----Start of step: 5
Max of dl_dw[0]: 0.0051
Min of dl_dw[0]: -0.0096
Mean of dl_dw[0]: -0.0001
-
Max of d2l_dw2[0]: 0.2545
Min of d2l_dw2[0]: -0.0284
Mean of d2l_dw2[0]: 0.0079
----Start of step: 6
Max of dl_dw[0]: 0.0041
Min of dl_dw[0]: -0.0102
Mean of dl_dw[0]: -0.0001
-
Max of d2l_dw2[0]: 0.2198
Min of d2l_dw2[0]: -0.0175
Mean of d2l_dw2[0]: 0.0069
----Start of step: 7
Max of dl_dw[0]: 0.0035
Min of dl_dw[0]: -0.0086
Mean of dl_dw[0]: -0.0001
-
Max of d2l_dw2[0]: 0.1485
Min of d2l_dw2[0]: -0.0175
Mean of d2l_dw2[0]: 0.0060
----Start of step: 8
Max of dl_dw[0]: 0.0039
Min of dl_dw[0]: -0.0094
Mean of dl_dw[0]: -0.0001
-
Max of d2l_dw2[0]: 0.1454
Min of d2l_dw2[0]: -0.0130
Mean of d2l_dw2[0]: 0.0061
----Start of step: 9
Max of dl_dw[0]: 0.0028
Min of dl_dw[0]: -0.0087
Mean of dl_dw[0]: -0.0001
-
Max of d2l_dw2[0]: 0.1491
Min of d2l_dw2[0]: -0.0326
Mean of d2l_dw2[0]: 0.0058
<keras.src.callbacks.history.History at 0x2a0d1e440>
我们学到了什么?
这引出了一个显而易见的想法:在组合梯度之前先对其进行归一化。
class MyModel(keras.Model):
def train_step(self, data):
inputs, targets = data
trainable_vars = self.trainable_variables
with tf.GradientTape() as tape2:
with tf.GradientTape() as tape1:
y_pred = self(inputs, training=True) # Forward pass
# Compute the loss value
# (the loss function is configured in `compile()`)
loss = self.compute_loss(y=targets, y_pred=y_pred)
# Compute first-order gradients
dl_dw = tape1.gradient(loss, trainable_vars)
# Compute second-order gradients
d2l_dw2 = tape2.gradient(dl_dw, trainable_vars)
dl_dw = [tf.math.l2_normalize(w) for w in dl_dw]
d2l_dw2 = [tf.math.l2_normalize(w) for w in d2l_dw2]
# Combine first-order and second-order gradients
grads = [0.5 * w1 + 0.5 * w2 for (w1, w2) in zip(d2l_dw2, dl_dw)]
# Update weights
self.optimizer.apply_gradients(zip(grads, trainable_vars))
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(targets, y_pred)
# Return a dict mapping metric names to current value
return {m.name: m.result() for m in self.metrics}
model = get_model()
model.compile(
optimizer=keras.optimizers.SGD(learning_rate=1e-2),
loss="sparse_categorical_crossentropy",
metrics=["sparse_categorical_accuracy"],
)
model.fit(x_train, y_train, epochs=5, batch_size=1024, validation_split=0.1)
Epoch 1/5
53/53 ━━━━━━━━━━━━━━━━━━━━ 1s 7ms/step - sparse_categorical_accuracy: 0.1250 - loss: 2.3185 - val_loss: 2.0502 - val_sparse_categorical_accuracy: 0.3373
Epoch 2/5
53/53 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step - sparse_categorical_accuracy: 0.3966 - loss: 1.9934 - val_loss: 1.8032 - val_sparse_categorical_accuracy: 0.5698
Epoch 3/5
53/53 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step - sparse_categorical_accuracy: 0.5663 - loss: 1.7784 - val_loss: 1.6241 - val_sparse_categorical_accuracy: 0.6470
Epoch 4/5
53/53 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step - sparse_categorical_accuracy: 0.6135 - loss: 1.6256 - val_loss: 1.5010 - val_sparse_categorical_accuracy: 0.6595
Epoch 5/5
53/53 ━━━━━━━━━━━━━━━━━━━━ 0s 7ms/step - sparse_categorical_accuracy: 0.6216 - loss: 1.5173 - val_loss: 1.4169 - val_sparse_categorical_accuracy: 0.6625
<keras.src.callbacks.history.History at 0x2a0d4c640>
现在,训练收敛了!效果虽然不尽如人意,但至少模型学到了一些东西。
在花费了几分钟调整参数后,我们得到了以下配置,效果还不错(验证准确率达到 97%,并且对过拟合似乎相当鲁棒):
0.2 * w1 + 0.8 * w2
组合梯度。我不会说这个想法有效——这完全不是进行二阶优化的正确方法(提示:请参阅牛顿法和高斯-牛顿法、拟牛顿法和 BFGS)。但希望这个演示能让你了解如何调试以摆脱令人困扰的训练情况。
记住:在调试 fit()
中发生的事情时,使用 run_eagerly=True
。当你的代码最终按预期工作时,务必移除此标志以获得最佳运行时性能!
这是我们最终的训练运行结果:
class MyModel(keras.Model):
def train_step(self, data):
inputs, targets = data
trainable_vars = self.trainable_variables
with tf.GradientTape() as tape2:
with tf.GradientTape() as tape1:
y_pred = self(inputs, training=True) # Forward pass
# Compute the loss value
# (the loss function is configured in `compile()`)
loss = self.compute_loss(y=targets, y_pred=y_pred)
# Compute first-order gradients
dl_dw = tape1.gradient(loss, trainable_vars)
# Compute second-order gradients
d2l_dw2 = tape2.gradient(dl_dw, trainable_vars)
dl_dw = [tf.math.l2_normalize(w) for w in dl_dw]
d2l_dw2 = [tf.math.l2_normalize(w) for w in d2l_dw2]
# Combine first-order and second-order gradients
grads = [0.2 * w1 + 0.8 * w2 for (w1, w2) in zip(d2l_dw2, dl_dw)]
# Update weights
self.optimizer.apply_gradients(zip(grads, trainable_vars))
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(targets, y_pred)
# Return a dict mapping metric names to current value
return {m.name: m.result() for m in self.metrics}
model = get_model()
lr = learning_rate = keras.optimizers.schedules.InverseTimeDecay(
initial_learning_rate=0.1, decay_steps=25, decay_rate=0.1
)
model.compile(
optimizer=keras.optimizers.SGD(lr),
loss="sparse_categorical_crossentropy",
metrics=["sparse_categorical_accuracy"],
)
model.fit(x_train, y_train, epochs=50, batch_size=2048, validation_split=0.1)
Epoch 1/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 1s 14ms/step - sparse_categorical_accuracy: 0.5056 - loss: 1.7508 - val_loss: 0.6378 - val_sparse_categorical_accuracy: 0.8658
Epoch 2/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/step - sparse_categorical_accuracy: 0.8407 - loss: 0.6323 - val_loss: 0.4039 - val_sparse_categorical_accuracy: 0.8970
Epoch 3/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/step - sparse_categorical_accuracy: 0.8807 - loss: 0.4472 - val_loss: 0.3243 - val_sparse_categorical_accuracy: 0.9120
Epoch 4/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/step - sparse_categorical_accuracy: 0.8947 - loss: 0.3781 - val_loss: 0.2861 - val_sparse_categorical_accuracy: 0.9235
Epoch 5/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step - sparse_categorical_accuracy: 0.9022 - loss: 0.3453 - val_loss: 0.2622 - val_sparse_categorical_accuracy: 0.9288
Epoch 6/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step - sparse_categorical_accuracy: 0.9093 - loss: 0.3243 - val_loss: 0.2523 - val_sparse_categorical_accuracy: 0.9303
Epoch 7/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step - sparse_categorical_accuracy: 0.9148 - loss: 0.3021 - val_loss: 0.2362 - val_sparse_categorical_accuracy: 0.9338
Epoch 8/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step - sparse_categorical_accuracy: 0.9184 - loss: 0.2899 - val_loss: 0.2289 - val_sparse_categorical_accuracy: 0.9365
Epoch 9/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step - sparse_categorical_accuracy: 0.9212 - loss: 0.2784 - val_loss: 0.2183 - val_sparse_categorical_accuracy: 0.9383
Epoch 10/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step - sparse_categorical_accuracy: 0.9246 - loss: 0.2670 - val_loss: 0.2097 - val_sparse_categorical_accuracy: 0.9405
Epoch 11/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step - sparse_categorical_accuracy: 0.9267 - loss: 0.2563 - val_loss: 0.2063 - val_sparse_categorical_accuracy: 0.9442
Epoch 12/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9313 - loss: 0.2412 - val_loss: 0.1965 - val_sparse_categorical_accuracy: 0.9458
Epoch 13/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9324 - loss: 0.2411 - val_loss: 0.1917 - val_sparse_categorical_accuracy: 0.9472
Epoch 14/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9359 - loss: 0.2260 - val_loss: 0.1861 - val_sparse_categorical_accuracy: 0.9495
Epoch 15/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9374 - loss: 0.2234 - val_loss: 0.1804 - val_sparse_categorical_accuracy: 0.9517
Epoch 16/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - sparse_categorical_accuracy: 0.9382 - loss: 0.2196 - val_loss: 0.1761 - val_sparse_categorical_accuracy: 0.9528
Epoch 17/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - sparse_categorical_accuracy: 0.9417 - loss: 0.2076 - val_loss: 0.1709 - val_sparse_categorical_accuracy: 0.9557
Epoch 18/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - sparse_categorical_accuracy: 0.9423 - loss: 0.2032 - val_loss: 0.1664 - val_sparse_categorical_accuracy: 0.9555
Epoch 19/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9444 - loss: 0.1953 - val_loss: 0.1616 - val_sparse_categorical_accuracy: 0.9582
Epoch 20/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9451 - loss: 0.1916 - val_loss: 0.1597 - val_sparse_categorical_accuracy: 0.9592
Epoch 21/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - sparse_categorical_accuracy: 0.9473 - loss: 0.1866 - val_loss: 0.1563 - val_sparse_categorical_accuracy: 0.9615
Epoch 22/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9486 - loss: 0.1818 - val_loss: 0.1520 - val_sparse_categorical_accuracy: 0.9617
Epoch 23/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9502 - loss: 0.1794 - val_loss: 0.1499 - val_sparse_categorical_accuracy: 0.9635
Epoch 24/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9502 - loss: 0.1759 - val_loss: 0.1466 - val_sparse_categorical_accuracy: 0.9640
Epoch 25/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9515 - loss: 0.1714 - val_loss: 0.1437 - val_sparse_categorical_accuracy: 0.9645
Epoch 26/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - sparse_categorical_accuracy: 0.9535 - loss: 0.1649 - val_loss: 0.1435 - val_sparse_categorical_accuracy: 0.9640
Epoch 27/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - sparse_categorical_accuracy: 0.9548 - loss: 0.1628 - val_loss: 0.1411 - val_sparse_categorical_accuracy: 0.9650
Epoch 28/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9541 - loss: 0.1620 - val_loss: 0.1384 - val_sparse_categorical_accuracy: 0.9655
Epoch 29/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9564 - loss: 0.1560 - val_loss: 0.1359 - val_sparse_categorical_accuracy: 0.9668
Epoch 30/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9577 - loss: 0.1547 - val_loss: 0.1338 - val_sparse_categorical_accuracy: 0.9672
Epoch 31/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9569 - loss: 0.1520 - val_loss: 0.1329 - val_sparse_categorical_accuracy: 0.9663
Epoch 32/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9582 - loss: 0.1478 - val_loss: 0.1320 - val_sparse_categorical_accuracy: 0.9675
Epoch 33/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9582 - loss: 0.1483 - val_loss: 0.1292 - val_sparse_categorical_accuracy: 0.9670
Epoch 34/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9594 - loss: 0.1448 - val_loss: 0.1274 - val_sparse_categorical_accuracy: 0.9677
Epoch 35/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9587 - loss: 0.1452 - val_loss: 0.1262 - val_sparse_categorical_accuracy: 0.9678
Epoch 36/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9603 - loss: 0.1418 - val_loss: 0.1251 - val_sparse_categorical_accuracy: 0.9677
Epoch 37/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9603 - loss: 0.1402 - val_loss: 0.1238 - val_sparse_categorical_accuracy: 0.9682
Epoch 38/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step - sparse_categorical_accuracy: 0.9618 - loss: 0.1382 - val_loss: 0.1228 - val_sparse_categorical_accuracy: 0.9680
Epoch 39/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9630 - loss: 0.1335 - val_loss: 0.1213 - val_sparse_categorical_accuracy: 0.9695
Epoch 40/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9629 - loss: 0.1327 - val_loss: 0.1198 - val_sparse_categorical_accuracy: 0.9698
Epoch 41/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9639 - loss: 0.1323 - val_loss: 0.1191 - val_sparse_categorical_accuracy: 0.9695
Epoch 42/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9629 - loss: 0.1346 - val_loss: 0.1183 - val_sparse_categorical_accuracy: 0.9692
Epoch 43/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9661 - loss: 0.1262 - val_loss: 0.1182 - val_sparse_categorical_accuracy: 0.9700
Epoch 44/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9652 - loss: 0.1274 - val_loss: 0.1163 - val_sparse_categorical_accuracy: 0.9702
Epoch 45/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9650 - loss: 0.1259 - val_loss: 0.1154 - val_sparse_categorical_accuracy: 0.9708
Epoch 46/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step - sparse_categorical_accuracy: 0.9647 - loss: 0.1246 - val_loss: 0.1148 - val_sparse_categorical_accuracy: 0.9703
Epoch 47/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9659 - loss: 0.1236 - val_loss: 0.1137 - val_sparse_categorical_accuracy: 0.9707
Epoch 48/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9665 - loss: 0.1221 - val_loss: 0.1133 - val_sparse_categorical_accuracy: 0.9710
Epoch 49/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9675 - loss: 0.1192 - val_loss: 0.1124 - val_sparse_categorical_accuracy: 0.9712
Epoch 50/50
27/27 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - sparse_categorical_accuracy: 0.9664 - loss: 0.1214 - val_loss: 0.1112 - val_sparse_categorical_accuracy: 0.9707
<keras.src.callbacks.history.History at 0x29e76ae60>