作者: Khalid Salama
创建日期 2021/05/30
最后修改日期 2021/05/30
描述: 实现一个图神经网络模型,用于根据论文的引用预测论文的主题。
各种机器学习 (ML) 应用中的许多数据集在其实体之间具有结构化关系,这些关系可以用图来表示。此类应用包括社交和通信网络分析、流量预测和欺诈检测。图表示学习 旨在为图数据集构建和训练模型,以用于各种 ML 任务。
此示例演示了 图神经网络 (GNN) 模型的简单实现。该模型用于对 Cora 数据集 上的节点预测任务,以根据其词语和引用网络预测论文的主题。
请注意,我们从头开始实现了一个图卷积层,以便更好地理解它们的工作原理。但是,有一些专门的基于 TensorFlow 的库提供了丰富的 GNN API,例如 Spectral、StellarGraph 和 GraphNets。
import os
import pandas as pd
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
Cora 数据集包含 2,708 篇科学论文,分为七个类别之一。引用网络包含 5,429 个链接。每篇论文都有一个大小为 1,433 的二进制词向量,表示对应词的存在。
该数据集有两个制表符分隔的文件:cora.cites
和 cora.content
。
cora.cites
包含引用记录,包含两列:cited_paper_id
(目标)和 citing_paper_id
(源)。cora.content
包含论文内容记录,包含 1,435 列:paper_id
、subject
和 1,433 个二进制特征。让我们下载数据集。
zip_file = keras.utils.get_file(
fname="cora.tgz",
origin="https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz",
extract=True,
)
data_dir = os.path.join(os.path.dirname(zip_file), "cora")
然后,我们将引用数据加载到 Pandas DataFrame 中。
citations = pd.read_csv(
os.path.join(data_dir, "cora.cites"),
sep="\t",
header=None,
names=["target", "source"],
)
print("Citations shape:", citations.shape)
Citations shape: (5429, 2)
现在,我们显示 citations
DataFrame 的示例。target
列包含被 source
列中论文 ID 所引用的论文 ID。
citations.sample(frac=1).head()
target | source | |
---|---|---|
2581 | 28227 | 6169 |
1500 | 7297 | 7276 |
1194 | 6184 | 1105718 |
4221 | 139738 | 1108834 |
3707 | 79809 | 1153275 |
现在,让我们将论文数据加载到 Pandas DataFrame 中。
column_names = ["paper_id"] + [f"term_{idx}" for idx in range(1433)] + ["subject"]
papers = pd.read_csv(
os.path.join(data_dir, "cora.content"), sep="\t", header=None, names=column_names,
)
print("Papers shape:", papers.shape)
Papers shape: (2708, 1435)
现在,我们显示 papers
DataFrame 的示例。DataFrame 包含 paper_id
和 subject
列,以及 1,433 个二进制列,表示某个术语是否存在于论文中。
print(papers.sample(5).T)
1 133 2425 \
paper_id 1061127 34355 1108389
term_0 0 0 0
term_1 0 0 0
term_2 0 0 0
term_3 0 0 0
... ... ... ...
term_1429 0 0 0
term_1430 0 0 0
term_1431 0 0 0
term_1432 0 0 0
subject Rule_Learning Neural_Networks Probabilistic_Methods
2103 1346
paper_id 1153942 80491
term_0 0 0
term_1 0 0
term_2 1 0
term_3 0 0
... ... ...
term_1429 0 0
term_1430 0 0
term_1431 0 0
term_1432 0 0
subject Genetic_Algorithms Neural_Networks
[1435 rows x 5 columns]
让我们显示每个主题中论文的数量。
print(papers.subject.value_counts())
Neural_Networks 818
Probabilistic_Methods 426
Genetic_Algorithms 418
Theory 351
Case_Based 298
Reinforcement_Learning 217
Rule_Learning 180
Name: subject, dtype: int64
我们将论文 ID 和主题转换为以零为基准的索引。
class_values = sorted(papers["subject"].unique())
class_idx = {name: id for id, name in enumerate(class_values)}
paper_idx = {name: idx for idx, name in enumerate(sorted(papers["paper_id"].unique()))}
papers["paper_id"] = papers["paper_id"].apply(lambda name: paper_idx[name])
citations["source"] = citations["source"].apply(lambda name: paper_idx[name])
citations["target"] = citations["target"].apply(lambda name: paper_idx[name])
papers["subject"] = papers["subject"].apply(lambda value: class_idx[value])
现在,让我们可视化引用图。图中的每个节点都代表一篇论文,节点的颜色对应于其主题。请注意,我们只显示了数据集中的一部分论文。
plt.figure(figsize=(10, 10))
colors = papers["subject"].tolist()
cora_graph = nx.from_pandas_edgelist(citations.sample(n=1500))
subjects = list(papers[papers["paper_id"].isin(list(cora_graph.nodes))]["subject"])
nx.draw_spring(cora_graph, node_size=15, node_color=subjects)
train_data, test_data = [], []
for _, group_data in papers.groupby("subject"):
# Select around 50% of the dataset for training.
random_selection = np.random.rand(len(group_data.index)) <= 0.5
train_data.append(group_data[random_selection])
test_data.append(group_data[~random_selection])
train_data = pd.concat(train_data).sample(frac=1)
test_data = pd.concat(test_data).sample(frac=1)
print("Train data shape:", train_data.shape)
print("Test data shape:", test_data.shape)
Train data shape: (1360, 1435)
Test data shape: (1348, 1435)
hidden_units = [32, 32]
learning_rate = 0.01
dropout_rate = 0.5
num_epochs = 300
batch_size = 256
此函数使用给定的训练数据编译和训练输入模型。
def run_experiment(model, x_train, y_train):
# Compile the model.
model.compile(
optimizer=keras.optimizers.Adam(learning_rate),
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy(name="acc")],
)
# Create an early stopping callback.
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_acc", patience=50, restore_best_weights=True
)
# Fit the model.
history = model.fit(
x=x_train,
y=y_train,
epochs=num_epochs,
batch_size=batch_size,
validation_split=0.15,
callbacks=[early_stopping],
)
return history
此函数显示模型在训练期间的损失和准确性曲线。
def display_learning_curves(history):
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
ax1.plot(history.history["loss"])
ax1.plot(history.history["val_loss"])
ax1.legend(["train", "test"], loc="upper right")
ax1.set_xlabel("Epochs")
ax1.set_ylabel("Loss")
ax2.plot(history.history["acc"])
ax2.plot(history.history["val_acc"])
ax2.legend(["train", "test"], loc="upper right")
ax2.set_xlabel("Epochs")
ax2.set_ylabel("Accuracy")
plt.show()
我们将在基线模型和 GNN 模型中使用此模块。
def create_ffn(hidden_units, dropout_rate, name=None):
fnn_layers = []
for units in hidden_units:
fnn_layers.append(layers.BatchNormalization())
fnn_layers.append(layers.Dropout(dropout_rate))
fnn_layers.append(layers.Dense(units, activation=tf.nn.gelu))
return keras.Sequential(fnn_layers, name=name)
feature_names = list(set(papers.columns) - {"paper_id", "subject"})
num_features = len(feature_names)
num_classes = len(class_idx)
# Create train and test features as a numpy array.
x_train = train_data[feature_names].to_numpy()
x_test = test_data[feature_names].to_numpy()
# Create train and test targets as a numpy array.
y_train = train_data["subject"]
y_test = test_data["subject"]
我们添加了五个带跳跃连接的 FFN 块,因此我们生成了一个参数数量与稍后构建的 GNN 模型大致相同的基线模型。
def create_baseline_model(hidden_units, num_classes, dropout_rate=0.2):
inputs = layers.Input(shape=(num_features,), name="input_features")
x = create_ffn(hidden_units, dropout_rate, name=f"ffn_block1")(inputs)
for block_idx in range(4):
# Create an FFN block.
x1 = create_ffn(hidden_units, dropout_rate, name=f"ffn_block{block_idx + 2}")(x)
# Add skip connection.
x = layers.Add(name=f"skip_connection{block_idx + 2}")([x, x1])
# Compute logits.
logits = layers.Dense(num_classes, name="logits")(x)
# Create the model.
return keras.Model(inputs=inputs, outputs=logits, name="baseline")
baseline_model = create_baseline_model(hidden_units, num_classes, dropout_rate)
baseline_model.summary()
Model: "baseline"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_features (InputLayer) [(None, 1433)] 0
__________________________________________________________________________________________________
ffn_block1 (Sequential) (None, 32) 52804 input_features[0][0]
__________________________________________________________________________________________________
ffn_block2 (Sequential) (None, 32) 2368 ffn_block1[0][0]
__________________________________________________________________________________________________
skip_connection2 (Add) (None, 32) 0 ffn_block1[0][0]
ffn_block2[0][0]
__________________________________________________________________________________________________
ffn_block3 (Sequential) (None, 32) 2368 skip_connection2[0][0]
__________________________________________________________________________________________________
skip_connection3 (Add) (None, 32) 0 skip_connection2[0][0]
ffn_block3[0][0]
__________________________________________________________________________________________________
ffn_block4 (Sequential) (None, 32) 2368 skip_connection3[0][0]
__________________________________________________________________________________________________
skip_connection4 (Add) (None, 32) 0 skip_connection3[0][0]
ffn_block4[0][0]
__________________________________________________________________________________________________
ffn_block5 (Sequential) (None, 32) 2368 skip_connection4[0][0]
__________________________________________________________________________________________________
skip_connection5 (Add) (None, 32) 0 skip_connection4[0][0]
ffn_block5[0][0]
__________________________________________________________________________________________________
logits (Dense) (None, 7) 231 skip_connection5[0][0]
==================================================================================================
Total params: 62,507
Trainable params: 59,065
Non-trainable params: 3,442
__________________________________________________________________________________________________
history = run_experiment(baseline_model, x_train, y_train)
Epoch 1/300
5/5 [==============================] - 3s 203ms/step - loss: 4.1695 - acc: 0.1660 - val_loss: 1.9008 - val_acc: 0.3186
Epoch 2/300
5/5 [==============================] - 0s 15ms/step - loss: 2.9269 - acc: 0.2630 - val_loss: 1.8906 - val_acc: 0.3235
Epoch 3/300
5/5 [==============================] - 0s 15ms/step - loss: 2.5669 - acc: 0.2424 - val_loss: 1.8713 - val_acc: 0.3186
Epoch 4/300
5/5 [==============================] - 0s 15ms/step - loss: 2.1377 - acc: 0.3147 - val_loss: 1.8687 - val_acc: 0.3529
Epoch 5/300
5/5 [==============================] - 0s 15ms/step - loss: 2.0256 - acc: 0.3297 - val_loss: 1.8285 - val_acc: 0.3235
Epoch 6/300
5/5 [==============================] - 0s 15ms/step - loss: 1.8148 - acc: 0.3495 - val_loss: 1.8000 - val_acc: 0.3235
Epoch 7/300
5/5 [==============================] - 0s 15ms/step - loss: 1.7216 - acc: 0.3883 - val_loss: 1.7771 - val_acc: 0.3333
Epoch 8/300
5/5 [==============================] - 0s 15ms/step - loss: 1.6941 - acc: 0.3910 - val_loss: 1.7528 - val_acc: 0.3284
Epoch 9/300
5/5 [==============================] - 0s 15ms/step - loss: 1.5690 - acc: 0.4358 - val_loss: 1.7128 - val_acc: 0.3333
Epoch 10/300
5/5 [==============================] - 0s 15ms/step - loss: 1.5139 - acc: 0.4367 - val_loss: 1.6650 - val_acc: 0.3676
Epoch 11/300
5/5 [==============================] - 0s 15ms/step - loss: 1.4370 - acc: 0.4930 - val_loss: 1.6145 - val_acc: 0.3775
Epoch 12/300
5/5 [==============================] - 0s 15ms/step - loss: 1.3696 - acc: 0.5109 - val_loss: 1.5787 - val_acc: 0.3873
Epoch 13/300
5/5 [==============================] - 0s 15ms/step - loss: 1.3979 - acc: 0.5341 - val_loss: 1.5564 - val_acc: 0.3922
Epoch 14/300
5/5 [==============================] - 0s 15ms/step - loss: 1.2681 - acc: 0.5599 - val_loss: 1.5547 - val_acc: 0.3922
Epoch 15/300
5/5 [==============================] - 0s 16ms/step - loss: 1.1970 - acc: 0.5807 - val_loss: 1.5735 - val_acc: 0.3873
Epoch 16/300
5/5 [==============================] - 0s 15ms/step - loss: 1.1555 - acc: 0.6032 - val_loss: 1.5131 - val_acc: 0.4216
Epoch 17/300
5/5 [==============================] - 0s 15ms/step - loss: 1.1234 - acc: 0.6130 - val_loss: 1.4385 - val_acc: 0.4608
Epoch 18/300
5/5 [==============================] - 0s 14ms/step - loss: 1.0507 - acc: 0.6306 - val_loss: 1.3929 - val_acc: 0.4804
Epoch 19/300
5/5 [==============================] - 0s 15ms/step - loss: 1.0341 - acc: 0.6393 - val_loss: 1.3628 - val_acc: 0.4902
Epoch 20/300
5/5 [==============================] - 0s 35ms/step - loss: 0.9457 - acc: 0.6693 - val_loss: 1.3383 - val_acc: 0.4902
Epoch 21/300
5/5 [==============================] - 0s 17ms/step - loss: 0.9054 - acc: 0.6756 - val_loss: 1.3365 - val_acc: 0.4951
Epoch 22/300
5/5 [==============================] - 0s 15ms/step - loss: 0.8952 - acc: 0.6854 - val_loss: 1.3228 - val_acc: 0.5049
Epoch 23/300
5/5 [==============================] - 0s 15ms/step - loss: 0.8413 - acc: 0.7217 - val_loss: 1.2924 - val_acc: 0.5294
Epoch 24/300
5/5 [==============================] - 0s 15ms/step - loss: 0.8543 - acc: 0.6998 - val_loss: 1.2379 - val_acc: 0.5490
Epoch 25/300
5/5 [==============================] - 0s 16ms/step - loss: 0.7632 - acc: 0.7376 - val_loss: 1.1516 - val_acc: 0.5833
Epoch 26/300
5/5 [==============================] - 0s 15ms/step - loss: 0.7189 - acc: 0.7496 - val_loss: 1.1296 - val_acc: 0.5931
Epoch 27/300
5/5 [==============================] - 0s 15ms/step - loss: 0.7433 - acc: 0.7482 - val_loss: 1.0937 - val_acc: 0.6127
Epoch 28/300
5/5 [==============================] - 0s 15ms/step - loss: 0.7310 - acc: 0.7440 - val_loss: 1.0950 - val_acc: 0.5980
Epoch 29/300
5/5 [==============================] - 0s 16ms/step - loss: 0.7059 - acc: 0.7654 - val_loss: 1.1343 - val_acc: 0.5882
Epoch 30/300
5/5 [==============================] - 0s 21ms/step - loss: 0.6831 - acc: 0.7645 - val_loss: 1.1938 - val_acc: 0.5686
Epoch 31/300
5/5 [==============================] - 0s 23ms/step - loss: 0.6741 - acc: 0.7788 - val_loss: 1.1281 - val_acc: 0.5931
Epoch 32/300
5/5 [==============================] - 0s 16ms/step - loss: 0.6344 - acc: 0.7753 - val_loss: 1.0870 - val_acc: 0.6029
Epoch 33/300
5/5 [==============================] - 0s 16ms/step - loss: 0.6052 - acc: 0.7876 - val_loss: 1.0947 - val_acc: 0.6127
Epoch 34/300
5/5 [==============================] - 0s 15ms/step - loss: 0.6313 - acc: 0.7908 - val_loss: 1.1186 - val_acc: 0.5882
Epoch 35/300
5/5 [==============================] - 0s 16ms/step - loss: 0.6163 - acc: 0.7955 - val_loss: 1.0899 - val_acc: 0.6176
Epoch 36/300
5/5 [==============================] - 0s 16ms/step - loss: 0.5388 - acc: 0.8203 - val_loss: 1.1222 - val_acc: 0.5882
Epoch 37/300
5/5 [==============================] - 0s 16ms/step - loss: 0.5487 - acc: 0.8080 - val_loss: 1.0205 - val_acc: 0.6127
Epoch 38/300
5/5 [==============================] - 0s 16ms/step - loss: 0.5885 - acc: 0.7903 - val_loss: 0.9268 - val_acc: 0.6569
Epoch 39/300
5/5 [==============================] - 0s 15ms/step - loss: 0.5541 - acc: 0.8025 - val_loss: 0.9367 - val_acc: 0.6471
Epoch 40/300
5/5 [==============================] - 0s 36ms/step - loss: 0.5594 - acc: 0.7935 - val_loss: 0.9688 - val_acc: 0.6275
Epoch 41/300
5/5 [==============================] - 0s 17ms/step - loss: 0.5255 - acc: 0.8169 - val_loss: 1.0076 - val_acc: 0.6324
Epoch 42/300
5/5 [==============================] - 0s 16ms/step - loss: 0.5284 - acc: 0.8180 - val_loss: 1.0106 - val_acc: 0.6373
Epoch 43/300
5/5 [==============================] - 0s 15ms/step - loss: 0.5141 - acc: 0.8188 - val_loss: 0.8842 - val_acc: 0.6912
Epoch 44/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4767 - acc: 0.8342 - val_loss: 0.8249 - val_acc: 0.7108
Epoch 45/300
5/5 [==============================] - 0s 15ms/step - loss: 0.5915 - acc: 0.8055 - val_loss: 0.8567 - val_acc: 0.6912
Epoch 46/300
5/5 [==============================] - 0s 15ms/step - loss: 0.5026 - acc: 0.8357 - val_loss: 0.9287 - val_acc: 0.6618
Epoch 47/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4859 - acc: 0.8304 - val_loss: 0.9044 - val_acc: 0.6667
Epoch 48/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4860 - acc: 0.8440 - val_loss: 0.8672 - val_acc: 0.6912
Epoch 49/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4723 - acc: 0.8358 - val_loss: 0.8717 - val_acc: 0.6863
Epoch 50/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4831 - acc: 0.8457 - val_loss: 0.8674 - val_acc: 0.6912
Epoch 51/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4873 - acc: 0.8353 - val_loss: 0.8587 - val_acc: 0.7010
Epoch 52/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4537 - acc: 0.8472 - val_loss: 0.8544 - val_acc: 0.7059
Epoch 53/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4684 - acc: 0.8425 - val_loss: 0.8423 - val_acc: 0.7206
Epoch 54/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4436 - acc: 0.8523 - val_loss: 0.8607 - val_acc: 0.6961
Epoch 55/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4589 - acc: 0.8335 - val_loss: 0.8462 - val_acc: 0.7059
Epoch 56/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4757 - acc: 0.8360 - val_loss: 0.8415 - val_acc: 0.7010
Epoch 57/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4270 - acc: 0.8593 - val_loss: 0.8094 - val_acc: 0.7255
Epoch 58/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4530 - acc: 0.8307 - val_loss: 0.8357 - val_acc: 0.7108
Epoch 59/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4370 - acc: 0.8453 - val_loss: 0.8804 - val_acc: 0.7108
Epoch 60/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4379 - acc: 0.8465 - val_loss: 0.8791 - val_acc: 0.7108
Epoch 61/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4254 - acc: 0.8615 - val_loss: 0.8355 - val_acc: 0.7059
Epoch 62/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3929 - acc: 0.8696 - val_loss: 0.8355 - val_acc: 0.7304
Epoch 63/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4039 - acc: 0.8516 - val_loss: 0.8576 - val_acc: 0.7353
Epoch 64/300
5/5 [==============================] - 0s 35ms/step - loss: 0.4220 - acc: 0.8596 - val_loss: 0.8848 - val_acc: 0.7059
Epoch 65/300
5/5 [==============================] - 0s 17ms/step - loss: 0.4091 - acc: 0.8521 - val_loss: 0.8560 - val_acc: 0.7108
Epoch 66/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4658 - acc: 0.8470 - val_loss: 0.8518 - val_acc: 0.7206
Epoch 67/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4269 - acc: 0.8437 - val_loss: 0.7878 - val_acc: 0.7255
Epoch 68/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4368 - acc: 0.8438 - val_loss: 0.7859 - val_acc: 0.7255
Epoch 69/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4113 - acc: 0.8452 - val_loss: 0.8056 - val_acc: 0.7402
Epoch 70/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4304 - acc: 0.8469 - val_loss: 0.8093 - val_acc: 0.7451
Epoch 71/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4159 - acc: 0.8585 - val_loss: 0.8090 - val_acc: 0.7451
Epoch 72/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4218 - acc: 0.8610 - val_loss: 0.8028 - val_acc: 0.7402
Epoch 73/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3632 - acc: 0.8714 - val_loss: 0.8153 - val_acc: 0.7304
Epoch 74/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3745 - acc: 0.8722 - val_loss: 0.8299 - val_acc: 0.7402
Epoch 75/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3997 - acc: 0.8680 - val_loss: 0.8445 - val_acc: 0.7255
Epoch 76/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4143 - acc: 0.8620 - val_loss: 0.8344 - val_acc: 0.7206
Epoch 77/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4006 - acc: 0.8616 - val_loss: 0.8358 - val_acc: 0.7255
Epoch 78/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4266 - acc: 0.8532 - val_loss: 0.8266 - val_acc: 0.7206
Epoch 79/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4337 - acc: 0.8523 - val_loss: 0.8181 - val_acc: 0.7206
Epoch 80/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3857 - acc: 0.8624 - val_loss: 0.8143 - val_acc: 0.7206
Epoch 81/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4146 - acc: 0.8567 - val_loss: 0.8192 - val_acc: 0.7108
Epoch 82/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3638 - acc: 0.8794 - val_loss: 0.8248 - val_acc: 0.7206
Epoch 83/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4126 - acc: 0.8678 - val_loss: 0.8565 - val_acc: 0.7255
Epoch 84/300
5/5 [==============================] - 0s 36ms/step - loss: 0.3941 - acc: 0.8530 - val_loss: 0.8624 - val_acc: 0.7206
Epoch 85/300
5/5 [==============================] - 0s 17ms/step - loss: 0.3843 - acc: 0.8786 - val_loss: 0.8389 - val_acc: 0.7255
Epoch 86/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3651 - acc: 0.8747 - val_loss: 0.8314 - val_acc: 0.7206
Epoch 87/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3911 - acc: 0.8657 - val_loss: 0.8736 - val_acc: 0.7255
Epoch 88/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3706 - acc: 0.8714 - val_loss: 0.9159 - val_acc: 0.7108
Epoch 89/300
5/5 [==============================] - 0s 15ms/step - loss: 0.4403 - acc: 0.8386 - val_loss: 0.9038 - val_acc: 0.7206
Epoch 90/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3865 - acc: 0.8668 - val_loss: 0.8733 - val_acc: 0.7206
Epoch 91/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3757 - acc: 0.8643 - val_loss: 0.8704 - val_acc: 0.7157
Epoch 92/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3828 - acc: 0.8669 - val_loss: 0.8786 - val_acc: 0.7157
Epoch 93/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3651 - acc: 0.8787 - val_loss: 0.8977 - val_acc: 0.7206
Epoch 94/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3913 - acc: 0.8614 - val_loss: 0.9415 - val_acc: 0.7206
Epoch 95/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3995 - acc: 0.8590 - val_loss: 0.9495 - val_acc: 0.7157
Epoch 96/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4228 - acc: 0.8508 - val_loss: 0.9490 - val_acc: 0.7059
Epoch 97/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3853 - acc: 0.8789 - val_loss: 0.9402 - val_acc: 0.7157
Epoch 98/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3711 - acc: 0.8812 - val_loss: 0.9283 - val_acc: 0.7206
Epoch 99/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3949 - acc: 0.8578 - val_loss: 0.9591 - val_acc: 0.7108
Epoch 100/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3563 - acc: 0.8780 - val_loss: 0.9744 - val_acc: 0.7206
Epoch 101/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3579 - acc: 0.8815 - val_loss: 0.9358 - val_acc: 0.7206
Epoch 102/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4069 - acc: 0.8698 - val_loss: 0.9245 - val_acc: 0.7157
Epoch 103/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3161 - acc: 0.8955 - val_loss: 0.9401 - val_acc: 0.7157
Epoch 104/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3346 - acc: 0.8910 - val_loss: 0.9517 - val_acc: 0.7157
Epoch 105/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4204 - acc: 0.8538 - val_loss: 0.9366 - val_acc: 0.7157
Epoch 106/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3492 - acc: 0.8821 - val_loss: 0.9424 - val_acc: 0.7353
Epoch 107/300
5/5 [==============================] - 0s 16ms/step - loss: 0.4002 - acc: 0.8604 - val_loss: 0.9842 - val_acc: 0.7157
Epoch 108/300
5/5 [==============================] - 0s 35ms/step - loss: 0.3701 - acc: 0.8736 - val_loss: 0.9999 - val_acc: 0.7010
Epoch 109/300
5/5 [==============================] - 0s 17ms/step - loss: 0.3391 - acc: 0.8866 - val_loss: 0.9768 - val_acc: 0.6961
Epoch 110/300
5/5 [==============================] - 0s 15ms/step - loss: 0.3857 - acc: 0.8739 - val_loss: 0.9953 - val_acc: 0.7255
Epoch 111/300
5/5 [==============================] - 0s 16ms/step - loss: 0.3822 - acc: 0.8731 - val_loss: 0.9817 - val_acc: 0.7255
Epoch 112/300
5/5 [==============================] - 0s 23ms/step - loss: 0.3211 - acc: 0.8887 - val_loss: 0.9781 - val_acc: 0.7108
Epoch 113/300
5/5 [==============================] - 0s 20ms/step - loss: 0.3473 - acc: 0.8715 - val_loss: 0.9927 - val_acc: 0.6912
Epoch 114/300
5/5 [==============================] - 0s 20ms/step - loss: 0.4026 - acc: 0.8621 - val_loss: 1.0002 - val_acc: 0.6863
Epoch 115/300
5/5 [==============================] - 0s 20ms/step - loss: 0.3413 - acc: 0.8837 - val_loss: 1.0031 - val_acc: 0.6912
Epoch 116/300
5/5 [==============================] - 0s 20ms/step - loss: 0.3653 - acc: 0.8765 - val_loss: 1.0065 - val_acc: 0.7010
Epoch 117/300
5/5 [==============================] - 0s 21ms/step - loss: 0.3147 - acc: 0.8974 - val_loss: 1.0206 - val_acc: 0.7059
Epoch 118/300
5/5 [==============================] - 0s 21ms/step - loss: 0.3639 - acc: 0.8783 - val_loss: 1.0206 - val_acc: 0.7010
Epoch 119/300
5/5 [==============================] - 0s 19ms/step - loss: 0.3660 - acc: 0.8696 - val_loss: 1.0260 - val_acc: 0.6912
Epoch 120/300
5/5 [==============================] - 0s 18ms/step - loss: 0.3624 - acc: 0.8708 - val_loss: 1.0619 - val_acc: 0.6814
让我们绘制学习曲线。
display_learning_curves(history)
现在,我们评估基线模型在测试数据拆分上的表现。
_, test_accuracy = baseline_model.evaluate(x=x_test, y=y_test, verbose=0)
print(f"Test accuracy: {round(test_accuracy * 100, 2)}%")
Test accuracy: 73.52%
让我们通过根据词语存在概率随机生成二进制词向量来创建新的数据实例。
def generate_random_instances(num_instances):
token_probability = x_train.mean(axis=0)
instances = []
for _ in range(num_instances):
probabilities = np.random.uniform(size=len(token_probability))
instance = (probabilities <= token_probability).astype(int)
instances.append(instance)
return np.array(instances)
def display_class_probabilities(probabilities):
for instance_idx, probs in enumerate(probabilities):
print(f"Instance {instance_idx + 1}:")
for class_idx, prob in enumerate(probs):
print(f"- {class_values[class_idx]}: {round(prob * 100, 2)}%")
现在,我们显示给定这些随机生成的实例的基线模型预测。
new_instances = generate_random_instances(num_classes)
logits = baseline_model.predict(new_instances)
probabilities = keras.activations.softmax(tf.convert_to_tensor(logits)).numpy()
display_class_probabilities(probabilities)
Instance 1:
- Case_Based: 13.02%
- Genetic_Algorithms: 6.89%
- Neural_Networks: 23.32%
- Probabilistic_Methods: 47.89%
- Reinforcement_Learning: 2.66%
- Rule_Learning: 1.18%
- Theory: 5.03%
Instance 2:
- Case_Based: 1.64%
- Genetic_Algorithms: 59.74%
- Neural_Networks: 27.13%
- Probabilistic_Methods: 9.02%
- Reinforcement_Learning: 1.05%
- Rule_Learning: 0.12%
- Theory: 1.31%
Instance 3:
- Case_Based: 1.35%
- Genetic_Algorithms: 77.41%
- Neural_Networks: 9.56%
- Probabilistic_Methods: 7.89%
- Reinforcement_Learning: 0.42%
- Rule_Learning: 0.46%
- Theory: 2.92%
Instance 4:
- Case_Based: 0.43%
- Genetic_Algorithms: 3.87%
- Neural_Networks: 92.88%
- Probabilistic_Methods: 0.97%
- Reinforcement_Learning: 0.56%
- Rule_Learning: 0.09%
- Theory: 1.2%
Instance 5:
- Case_Based: 0.11%
- Genetic_Algorithms: 0.17%
- Neural_Networks: 10.26%
- Probabilistic_Methods: 0.5%
- Reinforcement_Learning: 0.35%
- Rule_Learning: 0.63%
- Theory: 87.97%
Instance 6:
- Case_Based: 0.98%
- Genetic_Algorithms: 23.37%
- Neural_Networks: 70.76%
- Probabilistic_Methods: 1.12%
- Reinforcement_Learning: 2.23%
- Rule_Learning: 0.21%
- Theory: 1.33%
Instance 7:
- Case_Based: 0.64%
- Genetic_Algorithms: 2.42%
- Neural_Networks: 27.19%
- Probabilistic_Methods: 14.07%
- Reinforcement_Learning: 1.62%
- Rule_Learning: 9.35%
- Theory: 44.7%
将图数据准备并加载到模型中进行训练是 GNN 模型中最具挑战性的部分,专业库以不同的方式解决了这一问题。在本示例中,我们展示了一种简单的方法来准备和使用图数据,该方法适用于您的数据集包含一个完全适合内存的单个图的情况。
图数据由 graph_info
元组表示,该元组包含以下三个元素
node_features
:这是一个 [num_nodes, num_features]
NumPy 数组,包含节点特征。在此数据集中,节点是论文,node_features
是每篇论文的词语存在二进制向量。edges
:这是一个 [num_edges, num_edges]
NumPy 数组,表示节点之间链接的稀疏 邻接矩阵。在此示例中,链接是论文之间的引用。edge_weights
(可选):这是一个 [num_edges]
NumPy 数组,包含边权重,它们量化了图中节点之间的关系。在此示例中,论文引用没有权重。# Create an edges array (sparse adjacency matrix) of shape [2, num_edges].
edges = citations[["source", "target"]].to_numpy().T
# Create an edge weights array of ones.
edge_weights = tf.ones(shape=edges.shape[1])
# Create a node features array of shape [num_nodes, num_features].
node_features = tf.cast(
papers.sort_values("paper_id")[feature_names].to_numpy(), dtype=tf.dtypes.float32
)
# Create graph info tuple with node_features, edges, and edge_weights.
graph_info = (node_features, edges, edge_weights)
print("Edges shape:", edges.shape)
print("Nodes shape:", node_features.shape)
Edges shape: (2, 5429)
Nodes shape: (2708, 1433)
我们实现了一个图卷积模块,作为 Keras 层。我们的 GraphConvLayer
执行以下步骤
edge_weights
聚合每个节点邻居的消息,以准备每个节点的单个聚合消息。例如,请参阅 tf.math.unsorted_segment_sum API 用于聚合邻居消息。node_repesentations
和 aggregated_messages
(形状均为 [num_nodes, representation_dim]
)都将组合并处理,以生成节点表示(节点嵌入)的新状态。如果 combination_type
为 gru
,则将 node_repesentations
和 aggregated_messages
堆叠以创建序列,然后由 GRU 层进行处理。否则,将添加或连接 node_repesentations
和 aggregated_messages
,然后使用 FFN 进行处理。所实现的技术利用了 图卷积网络、GraphSage、图同构网络、简单图网络 和 门控图序列神经网络 中的思想。其他两个未涵盖的关键技术是 图注意力网络 和 消息传递神经网络。
def create_gru(hidden_units, dropout_rate):
inputs = keras.layers.Input(shape=(2, hidden_units[0]))
x = inputs
for units in hidden_units:
x = layers.GRU(
units=units,
activation="tanh",
recurrent_activation="sigmoid",
return_sequences=True,
dropout=dropout_rate,
return_state=False,
recurrent_dropout=dropout_rate,
)(x)
return keras.Model(inputs=inputs, outputs=x)
class GraphConvLayer(layers.Layer):
def __init__(
self,
hidden_units,
dropout_rate=0.2,
aggregation_type="mean",
combination_type="concat",
normalize=False,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.aggregation_type = aggregation_type
self.combination_type = combination_type
self.normalize = normalize
self.ffn_prepare = create_ffn(hidden_units, dropout_rate)
if self.combination_type == "gru":
self.update_fn = create_gru(hidden_units, dropout_rate)
else:
self.update_fn = create_ffn(hidden_units, dropout_rate)
def prepare(self, node_repesentations, weights=None):
# node_repesentations shape is [num_edges, embedding_dim].
messages = self.ffn_prepare(node_repesentations)
if weights is not None:
messages = messages * tf.expand_dims(weights, -1)
return messages
def aggregate(self, node_indices, neighbour_messages, node_repesentations):
# node_indices shape is [num_edges].
# neighbour_messages shape: [num_edges, representation_dim].
# node_repesentations shape is [num_nodes, representation_dim]
num_nodes = node_repesentations.shape[0]
if self.aggregation_type == "sum":
aggregated_message = tf.math.unsorted_segment_sum(
neighbour_messages, node_indices, num_segments=num_nodes
)
elif self.aggregation_type == "mean":
aggregated_message = tf.math.unsorted_segment_mean(
neighbour_messages, node_indices, num_segments=num_nodes
)
elif self.aggregation_type == "max":
aggregated_message = tf.math.unsorted_segment_max(
neighbour_messages, node_indices, num_segments=num_nodes
)
else:
raise ValueError(f"Invalid aggregation type: {self.aggregation_type}.")
return aggregated_message
def update(self, node_repesentations, aggregated_messages):
# node_repesentations shape is [num_nodes, representation_dim].
# aggregated_messages shape is [num_nodes, representation_dim].
if self.combination_type == "gru":
# Create a sequence of two elements for the GRU layer.
h = tf.stack([node_repesentations, aggregated_messages], axis=1)
elif self.combination_type == "concat":
# Concatenate the node_repesentations and aggregated_messages.
h = tf.concat([node_repesentations, aggregated_messages], axis=1)
elif self.combination_type == "add":
# Add node_repesentations and aggregated_messages.
h = node_repesentations + aggregated_messages
else:
raise ValueError(f"Invalid combination type: {self.combination_type}.")
# Apply the processing function.
node_embeddings = self.update_fn(h)
if self.combination_type == "gru":
node_embeddings = tf.unstack(node_embeddings, axis=1)[-1]
if self.normalize:
node_embeddings = tf.nn.l2_normalize(node_embeddings, axis=-1)
return node_embeddings
def call(self, inputs):
"""Process the inputs to produce the node_embeddings.
inputs: a tuple of three elements: node_repesentations, edges, edge_weights.
Returns: node_embeddings of shape [num_nodes, representation_dim].
"""
node_repesentations, edges, edge_weights = inputs
# Get node_indices (source) and neighbour_indices (target) from edges.
node_indices, neighbour_indices = edges[0], edges[1]
# neighbour_repesentations shape is [num_edges, representation_dim].
neighbour_repesentations = tf.gather(node_repesentations, neighbour_indices)
# Prepare the messages of the neighbours.
neighbour_messages = self.prepare(neighbour_repesentations, edge_weights)
# Aggregate the neighbour messages.
aggregated_messages = self.aggregate(
node_indices, neighbour_messages, node_repesentations
)
# Update the node embedding with the neighbour messages.
return self.update(node_repesentations, aggregated_messages)
GNN 分类模型遵循以下 图神经网络的设计空间 方法
添加的每个图卷积层都捕获了来自更远邻居级别的信息。但是,添加许多图卷积层会导致过度平滑,模型会为所有节点生成相似的嵌入。
请注意,graph_info
传递给 Keras 模型的构造函数,并用作 Keras 模型对象的属性,而不是用于训练或预测的输入数据。模型将接受 node_indices
的批次,这些批次用于从 graph_info
中查找节点特征和邻居。
class GNNNodeClassifier(tf.keras.Model):
def __init__(
self,
graph_info,
num_classes,
hidden_units,
aggregation_type="sum",
combination_type="concat",
dropout_rate=0.2,
normalize=True,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
# Unpack graph_info to three elements: node_features, edges, and edge_weight.
node_features, edges, edge_weights = graph_info
self.node_features = node_features
self.edges = edges
self.edge_weights = edge_weights
# Set edge_weights to ones if not provided.
if self.edge_weights is None:
self.edge_weights = tf.ones(shape=edges.shape[1])
# Scale edge_weights to sum to 1.
self.edge_weights = self.edge_weights / tf.math.reduce_sum(self.edge_weights)
# Create a process layer.
self.preprocess = create_ffn(hidden_units, dropout_rate, name="preprocess")
# Create the first GraphConv layer.
self.conv1 = GraphConvLayer(
hidden_units,
dropout_rate,
aggregation_type,
combination_type,
normalize,
name="graph_conv1",
)
# Create the second GraphConv layer.
self.conv2 = GraphConvLayer(
hidden_units,
dropout_rate,
aggregation_type,
combination_type,
normalize,
name="graph_conv2",
)
# Create a postprocess layer.
self.postprocess = create_ffn(hidden_units, dropout_rate, name="postprocess")
# Create a compute logits layer.
self.compute_logits = layers.Dense(units=num_classes, name="logits")
def call(self, input_node_indices):
# Preprocess the node_features to produce node representations.
x = self.preprocess(self.node_features)
# Apply the first graph conv layer.
x1 = self.conv1((x, self.edges, self.edge_weights))
# Skip connection.
x = x1 + x
# Apply the second graph conv layer.
x2 = self.conv2((x, self.edges, self.edge_weights))
# Skip connection.
x = x2 + x
# Postprocess node embedding.
x = self.postprocess(x)
# Fetch node embeddings for the input node_indices.
node_embeddings = tf.gather(x, input_node_indices)
# Compute logits
return self.compute_logits(node_embeddings)
让我们测试实例化和调用 GNN 模型。请注意,如果您提供 N
个节点索引,则输出将是形状为 [N, num_classes]
的张量,与图的大小无关。
gnn_model = GNNNodeClassifier(
graph_info=graph_info,
num_classes=num_classes,
hidden_units=hidden_units,
dropout_rate=dropout_rate,
name="gnn_model",
)
print("GNN output shape:", gnn_model([1, 10, 100]))
gnn_model.summary()
GNN output shape: tf.Tensor(
[[ 0.00620723 0.06162593 0.0176599 0.00830251 -0.03019211 -0.00402163
0.00277454]
[ 0.01705155 -0.0467547 0.01400987 -0.02146192 -0.11757397 0.10820404
-0.0375765 ]
[-0.02516522 -0.05514468 -0.03842098 -0.0495692 -0.05128997 -0.02241635
-0.07738923]], shape=(3, 7), dtype=float32)
Model: "gnn_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
preprocess (Sequential) (2708, 32) 52804
_________________________________________________________________
graph_conv1 (GraphConvLayer) multiple 5888
_________________________________________________________________
graph_conv2 (GraphConvLayer) multiple 5888
_________________________________________________________________
postprocess (Sequential) (2708, 32) 2368
_________________________________________________________________
logits (Dense) multiple 231
=================================================================
Total params: 67,179
Trainable params: 63,481
Non-trainable params: 3,698
_________________________________________________________________
请注意,我们使用标准的监督交叉熵损失来训练模型。但是,我们可以为生成的节点嵌入添加另一个自监督损失项,以确保图中相邻的节点具有相似的表示,而远离的节点具有不同的表示。
x_train = train_data.paper_id.to_numpy()
history = run_experiment(gnn_model, x_train, y_train)
Epoch 1/300
5/5 [==============================] - 4s 188ms/step - loss: 2.2529 - acc: 0.1793 - val_loss: 1.8933 - val_acc: 0.2941
Epoch 2/300
5/5 [==============================] - 0s 83ms/step - loss: 1.9866 - acc: 0.2601 - val_loss: 1.8753 - val_acc: 0.3186
Epoch 3/300
5/5 [==============================] - 0s 77ms/step - loss: 1.8794 - acc: 0.2846 - val_loss: 1.8655 - val_acc: 0.3186
Epoch 4/300
5/5 [==============================] - 0s 74ms/step - loss: 1.8432 - acc: 0.3078 - val_loss: 1.8529 - val_acc: 0.3186
Epoch 5/300
5/5 [==============================] - 0s 69ms/step - loss: 1.8314 - acc: 0.3134 - val_loss: 1.8429 - val_acc: 0.3186
Epoch 6/300
5/5 [==============================] - 0s 68ms/step - loss: 1.8157 - acc: 0.3208 - val_loss: 1.8326 - val_acc: 0.3186
Epoch 7/300
5/5 [==============================] - 0s 94ms/step - loss: 1.8112 - acc: 0.3071 - val_loss: 1.8265 - val_acc: 0.3186
Epoch 8/300
5/5 [==============================] - 0s 67ms/step - loss: 1.8028 - acc: 0.3132 - val_loss: 1.8171 - val_acc: 0.3186
Epoch 9/300
5/5 [==============================] - 0s 68ms/step - loss: 1.8007 - acc: 0.3206 - val_loss: 1.7961 - val_acc: 0.3186
Epoch 10/300
5/5 [==============================] - 0s 68ms/step - loss: 1.7571 - acc: 0.3259 - val_loss: 1.7623 - val_acc: 0.3186
Epoch 11/300
5/5 [==============================] - 0s 68ms/step - loss: 1.7373 - acc: 0.3279 - val_loss: 1.7131 - val_acc: 0.3186
Epoch 12/300
5/5 [==============================] - 0s 76ms/step - loss: 1.7130 - acc: 0.3169 - val_loss: 1.6552 - val_acc: 0.3186
Epoch 13/300
5/5 [==============================] - 0s 70ms/step - loss: 1.6989 - acc: 0.3315 - val_loss: 1.6075 - val_acc: 0.3284
Epoch 14/300
5/5 [==============================] - 0s 79ms/step - loss: 1.6733 - acc: 0.3522 - val_loss: 1.6027 - val_acc: 0.3333
Epoch 15/300
5/5 [==============================] - 0s 75ms/step - loss: 1.6060 - acc: 0.3641 - val_loss: 1.6422 - val_acc: 0.3480
Epoch 16/300
5/5 [==============================] - 0s 68ms/step - loss: 1.5783 - acc: 0.3924 - val_loss: 1.6893 - val_acc: 0.3676
Epoch 17/300
5/5 [==============================] - 0s 70ms/step - loss: 1.5269 - acc: 0.4315 - val_loss: 1.7534 - val_acc: 0.3725
Epoch 18/300
5/5 [==============================] - 0s 77ms/step - loss: 1.4558 - acc: 0.4633 - val_loss: 1.7224 - val_acc: 0.4167
Epoch 19/300
5/5 [==============================] - 0s 75ms/step - loss: 1.4131 - acc: 0.4765 - val_loss: 1.6482 - val_acc: 0.4510
Epoch 20/300
5/5 [==============================] - 0s 70ms/step - loss: 1.3880 - acc: 0.4859 - val_loss: 1.4956 - val_acc: 0.4706
Epoch 21/300
5/5 [==============================] - 0s 73ms/step - loss: 1.3223 - acc: 0.5166 - val_loss: 1.5299 - val_acc: 0.4853
Epoch 22/300
5/5 [==============================] - 0s 75ms/step - loss: 1.3226 - acc: 0.5172 - val_loss: 1.6304 - val_acc: 0.4902
Epoch 23/300
5/5 [==============================] - 0s 75ms/step - loss: 1.2888 - acc: 0.5267 - val_loss: 1.6679 - val_acc: 0.5000
Epoch 24/300
5/5 [==============================] - 0s 69ms/step - loss: 1.2478 - acc: 0.5279 - val_loss: 1.6552 - val_acc: 0.4853
Epoch 25/300
5/5 [==============================] - 0s 70ms/step - loss: 1.1978 - acc: 0.5720 - val_loss: 1.6705 - val_acc: 0.4902
Epoch 26/300
5/5 [==============================] - 0s 70ms/step - loss: 1.1814 - acc: 0.5596 - val_loss: 1.6327 - val_acc: 0.5343
Epoch 27/300
5/5 [==============================] - 0s 68ms/step - loss: 1.1085 - acc: 0.5979 - val_loss: 1.5184 - val_acc: 0.5245
Epoch 28/300
5/5 [==============================] - 0s 69ms/step - loss: 1.0695 - acc: 0.6078 - val_loss: 1.5212 - val_acc: 0.4853
Epoch 29/300
5/5 [==============================] - 0s 70ms/step - loss: 1.1063 - acc: 0.6002 - val_loss: 1.5988 - val_acc: 0.4706
Epoch 30/300
5/5 [==============================] - 0s 68ms/step - loss: 1.0194 - acc: 0.6326 - val_loss: 1.5636 - val_acc: 0.4951
Epoch 31/300
5/5 [==============================] - 0s 70ms/step - loss: 1.0320 - acc: 0.6268 - val_loss: 1.5191 - val_acc: 0.5196
Epoch 32/300
5/5 [==============================] - 0s 82ms/step - loss: 0.9749 - acc: 0.6433 - val_loss: 1.5922 - val_acc: 0.5098
Epoch 33/300
5/5 [==============================] - 0s 85ms/step - loss: 0.9095 - acc: 0.6717 - val_loss: 1.5879 - val_acc: 0.5000
Epoch 34/300
5/5 [==============================] - 0s 78ms/step - loss: 0.9324 - acc: 0.6903 - val_loss: 1.5717 - val_acc: 0.4951
Epoch 35/300
5/5 [==============================] - 0s 80ms/step - loss: 0.8908 - acc: 0.6953 - val_loss: 1.5010 - val_acc: 0.5098
Epoch 36/300
5/5 [==============================] - 0s 99ms/step - loss: 0.8858 - acc: 0.6977 - val_loss: 1.5939 - val_acc: 0.5147
Epoch 37/300
5/5 [==============================] - 0s 79ms/step - loss: 0.8376 - acc: 0.6991 - val_loss: 1.4000 - val_acc: 0.5833
Epoch 38/300
5/5 [==============================] - 0s 75ms/step - loss: 0.8657 - acc: 0.7080 - val_loss: 1.3288 - val_acc: 0.5931
Epoch 39/300
5/5 [==============================] - 0s 86ms/step - loss: 0.9160 - acc: 0.6819 - val_loss: 1.1358 - val_acc: 0.6275
Epoch 40/300
5/5 [==============================] - 0s 80ms/step - loss: 0.8676 - acc: 0.7109 - val_loss: 1.0618 - val_acc: 0.6765
Epoch 41/300
5/5 [==============================] - 0s 72ms/step - loss: 0.8065 - acc: 0.7246 - val_loss: 1.0785 - val_acc: 0.6765
Epoch 42/300
5/5 [==============================] - 0s 76ms/step - loss: 0.8478 - acc: 0.7145 - val_loss: 1.0502 - val_acc: 0.6569
Epoch 43/300
5/5 [==============================] - 0s 78ms/step - loss: 0.8125 - acc: 0.7068 - val_loss: 0.9888 - val_acc: 0.6520
Epoch 44/300
5/5 [==============================] - 0s 68ms/step - loss: 0.7791 - acc: 0.7425 - val_loss: 0.9820 - val_acc: 0.6618
Epoch 45/300
5/5 [==============================] - 0s 69ms/step - loss: 0.7492 - acc: 0.7368 - val_loss: 0.9297 - val_acc: 0.6961
Epoch 46/300
5/5 [==============================] - 0s 71ms/step - loss: 0.7521 - acc: 0.7668 - val_loss: 0.9757 - val_acc: 0.6961
Epoch 47/300
5/5 [==============================] - 0s 71ms/step - loss: 0.7090 - acc: 0.7587 - val_loss: 0.9676 - val_acc: 0.7059
Epoch 48/300
5/5 [==============================] - 0s 68ms/step - loss: 0.7008 - acc: 0.7430 - val_loss: 0.9457 - val_acc: 0.7010
Epoch 49/300
5/5 [==============================] - 0s 69ms/step - loss: 0.6919 - acc: 0.7584 - val_loss: 0.9998 - val_acc: 0.6569
Epoch 50/300
5/5 [==============================] - 0s 68ms/step - loss: 0.7583 - acc: 0.7628 - val_loss: 0.9707 - val_acc: 0.6667
Epoch 51/300
5/5 [==============================] - 0s 69ms/step - loss: 0.6575 - acc: 0.7697 - val_loss: 0.9260 - val_acc: 0.6814
Epoch 52/300
5/5 [==============================] - 0s 78ms/step - loss: 0.6751 - acc: 0.7774 - val_loss: 0.9173 - val_acc: 0.6765
Epoch 53/300
5/5 [==============================] - 0s 92ms/step - loss: 0.6964 - acc: 0.7561 - val_loss: 0.8985 - val_acc: 0.6961
Epoch 54/300
5/5 [==============================] - 0s 77ms/step - loss: 0.6386 - acc: 0.7872 - val_loss: 0.9455 - val_acc: 0.6961
Epoch 55/300
5/5 [==============================] - 0s 77ms/step - loss: 0.6110 - acc: 0.8130 - val_loss: 0.9780 - val_acc: 0.6716
Epoch 56/300
5/5 [==============================] - 0s 76ms/step - loss: 0.6483 - acc: 0.7703 - val_loss: 0.9650 - val_acc: 0.6863
Epoch 57/300
5/5 [==============================] - 0s 78ms/step - loss: 0.6811 - acc: 0.7706 - val_loss: 0.9446 - val_acc: 0.6667
Epoch 58/300
5/5 [==============================] - 0s 76ms/step - loss: 0.6391 - acc: 0.7852 - val_loss: 0.9059 - val_acc: 0.7010
Epoch 59/300
5/5 [==============================] - 0s 76ms/step - loss: 0.6533 - acc: 0.7784 - val_loss: 0.8964 - val_acc: 0.7108
Epoch 60/300
5/5 [==============================] - 0s 101ms/step - loss: 0.6587 - acc: 0.7863 - val_loss: 0.8417 - val_acc: 0.7108
Epoch 61/300
5/5 [==============================] - 0s 84ms/step - loss: 0.5776 - acc: 0.8166 - val_loss: 0.8035 - val_acc: 0.7304
Epoch 62/300
5/5 [==============================] - 0s 80ms/step - loss: 0.6396 - acc: 0.7792 - val_loss: 0.8072 - val_acc: 0.7500
Epoch 63/300
5/5 [==============================] - 0s 67ms/step - loss: 0.6201 - acc: 0.7972 - val_loss: 0.7809 - val_acc: 0.7696
Epoch 64/300
5/5 [==============================] - 0s 68ms/step - loss: 0.6358 - acc: 0.7875 - val_loss: 0.7635 - val_acc: 0.7500
Epoch 65/300
5/5 [==============================] - 0s 70ms/step - loss: 0.5914 - acc: 0.8027 - val_loss: 0.8147 - val_acc: 0.7402
Epoch 66/300
5/5 [==============================] - 0s 69ms/step - loss: 0.5960 - acc: 0.7955 - val_loss: 0.9350 - val_acc: 0.7304
Epoch 67/300
5/5 [==============================] - 0s 68ms/step - loss: 0.5752 - acc: 0.8001 - val_loss: 0.9849 - val_acc: 0.7157
Epoch 68/300
5/5 [==============================] - 0s 68ms/step - loss: 0.5189 - acc: 0.8322 - val_loss: 1.0268 - val_acc: 0.7206
Epoch 69/300
5/5 [==============================] - 0s 68ms/step - loss: 0.5413 - acc: 0.8078 - val_loss: 0.9132 - val_acc: 0.7549
Epoch 70/300
5/5 [==============================] - 0s 75ms/step - loss: 0.5231 - acc: 0.8222 - val_loss: 0.8673 - val_acc: 0.7647
Epoch 71/300
5/5 [==============================] - 0s 68ms/step - loss: 0.5416 - acc: 0.8219 - val_loss: 0.8179 - val_acc: 0.7696
Epoch 72/300
5/5 [==============================] - 0s 68ms/step - loss: 0.5060 - acc: 0.8263 - val_loss: 0.7870 - val_acc: 0.7794
Epoch 73/300
5/5 [==============================] - 0s 68ms/step - loss: 0.5502 - acc: 0.8221 - val_loss: 0.7749 - val_acc: 0.7549
Epoch 74/300
5/5 [==============================] - 0s 68ms/step - loss: 0.5111 - acc: 0.8434 - val_loss: 0.7830 - val_acc: 0.7549
Epoch 75/300
5/5 [==============================] - 0s 69ms/step - loss: 0.5119 - acc: 0.8386 - val_loss: 0.8140 - val_acc: 0.7451
Epoch 76/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4922 - acc: 0.8433 - val_loss: 0.8149 - val_acc: 0.7353
Epoch 77/300
5/5 [==============================] - 0s 71ms/step - loss: 0.5217 - acc: 0.8188 - val_loss: 0.7784 - val_acc: 0.7598
Epoch 78/300
5/5 [==============================] - 0s 68ms/step - loss: 0.5027 - acc: 0.8410 - val_loss: 0.7660 - val_acc: 0.7696
Epoch 79/300
5/5 [==============================] - 0s 67ms/step - loss: 0.5307 - acc: 0.8265 - val_loss: 0.7217 - val_acc: 0.7696
Epoch 80/300
5/5 [==============================] - 0s 68ms/step - loss: 0.5164 - acc: 0.8239 - val_loss: 0.6974 - val_acc: 0.7647
Epoch 81/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4404 - acc: 0.8526 - val_loss: 0.6891 - val_acc: 0.7745
Epoch 82/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4565 - acc: 0.8449 - val_loss: 0.6839 - val_acc: 0.7696
Epoch 83/300
5/5 [==============================] - 0s 67ms/step - loss: 0.4759 - acc: 0.8491 - val_loss: 0.7162 - val_acc: 0.7745
Epoch 84/300
5/5 [==============================] - 0s 70ms/step - loss: 0.5154 - acc: 0.8476 - val_loss: 0.7889 - val_acc: 0.7598
Epoch 85/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4847 - acc: 0.8480 - val_loss: 0.7579 - val_acc: 0.7794
Epoch 86/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4519 - acc: 0.8592 - val_loss: 0.7056 - val_acc: 0.7941
Epoch 87/300
5/5 [==============================] - 0s 67ms/step - loss: 0.5038 - acc: 0.8472 - val_loss: 0.6725 - val_acc: 0.7794
Epoch 88/300
5/5 [==============================] - 0s 92ms/step - loss: 0.4729 - acc: 0.8454 - val_loss: 0.7057 - val_acc: 0.7745
Epoch 89/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4811 - acc: 0.8562 - val_loss: 0.6784 - val_acc: 0.7990
Epoch 90/300
5/5 [==============================] - 0s 70ms/step - loss: 0.4102 - acc: 0.8779 - val_loss: 0.6383 - val_acc: 0.8039
Epoch 91/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4493 - acc: 0.8703 - val_loss: 0.6574 - val_acc: 0.7941
Epoch 92/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4560 - acc: 0.8610 - val_loss: 0.6764 - val_acc: 0.7941
Epoch 93/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4465 - acc: 0.8626 - val_loss: 0.6628 - val_acc: 0.7892
Epoch 94/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4773 - acc: 0.8446 - val_loss: 0.6573 - val_acc: 0.7941
Epoch 95/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4313 - acc: 0.8734 - val_loss: 0.6875 - val_acc: 0.7941
Epoch 96/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4668 - acc: 0.8598 - val_loss: 0.6712 - val_acc: 0.8039
Epoch 97/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4329 - acc: 0.8696 - val_loss: 0.6274 - val_acc: 0.8088
Epoch 98/300
5/5 [==============================] - 0s 71ms/step - loss: 0.4223 - acc: 0.8542 - val_loss: 0.6259 - val_acc: 0.7990
Epoch 99/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4677 - acc: 0.8488 - val_loss: 0.6431 - val_acc: 0.8186
Epoch 100/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3933 - acc: 0.8753 - val_loss: 0.6559 - val_acc: 0.8186
Epoch 101/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3945 - acc: 0.8777 - val_loss: 0.6461 - val_acc: 0.8186
Epoch 102/300
5/5 [==============================] - 0s 70ms/step - loss: 0.4671 - acc: 0.8324 - val_loss: 0.6607 - val_acc: 0.7990
Epoch 103/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3890 - acc: 0.8762 - val_loss: 0.6792 - val_acc: 0.7941
Epoch 104/300
5/5 [==============================] - 0s 67ms/step - loss: 0.4336 - acc: 0.8646 - val_loss: 0.6854 - val_acc: 0.7990
Epoch 105/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4304 - acc: 0.8651 - val_loss: 0.6949 - val_acc: 0.8039
Epoch 106/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4043 - acc: 0.8723 - val_loss: 0.6941 - val_acc: 0.7892
Epoch 107/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4043 - acc: 0.8713 - val_loss: 0.6798 - val_acc: 0.8088
Epoch 108/300
5/5 [==============================] - 0s 70ms/step - loss: 0.4647 - acc: 0.8599 - val_loss: 0.6726 - val_acc: 0.8039
Epoch 109/300
5/5 [==============================] - 0s 73ms/step - loss: 0.3916 - acc: 0.8820 - val_loss: 0.6680 - val_acc: 0.8137
Epoch 110/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3990 - acc: 0.8875 - val_loss: 0.6580 - val_acc: 0.8137
Epoch 111/300
5/5 [==============================] - 0s 95ms/step - loss: 0.4240 - acc: 0.8786 - val_loss: 0.6487 - val_acc: 0.8137
Epoch 112/300
5/5 [==============================] - 0s 67ms/step - loss: 0.4050 - acc: 0.8633 - val_loss: 0.6471 - val_acc: 0.8186
Epoch 113/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4120 - acc: 0.8522 - val_loss: 0.6375 - val_acc: 0.8137
Epoch 114/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3802 - acc: 0.8793 - val_loss: 0.6454 - val_acc: 0.8137
Epoch 115/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4073 - acc: 0.8730 - val_loss: 0.6504 - val_acc: 0.8088
Epoch 116/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3573 - acc: 0.8948 - val_loss: 0.6501 - val_acc: 0.7990
Epoch 117/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4238 - acc: 0.8611 - val_loss: 0.7339 - val_acc: 0.7843
Epoch 118/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3565 - acc: 0.8832 - val_loss: 0.7533 - val_acc: 0.7941
Epoch 119/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3863 - acc: 0.8834 - val_loss: 0.7470 - val_acc: 0.8186
Epoch 120/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3935 - acc: 0.8768 - val_loss: 0.6778 - val_acc: 0.8333
Epoch 121/300
5/5 [==============================] - 0s 70ms/step - loss: 0.3745 - acc: 0.8862 - val_loss: 0.6741 - val_acc: 0.8137
Epoch 122/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4152 - acc: 0.8647 - val_loss: 0.6594 - val_acc: 0.8235
Epoch 123/300
5/5 [==============================] - 0s 64ms/step - loss: 0.3987 - acc: 0.8813 - val_loss: 0.6478 - val_acc: 0.8235
Epoch 124/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4005 - acc: 0.8798 - val_loss: 0.6837 - val_acc: 0.8284
Epoch 125/300
5/5 [==============================] - 0s 68ms/step - loss: 0.4366 - acc: 0.8699 - val_loss: 0.6456 - val_acc: 0.8235
Epoch 126/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3544 - acc: 0.8852 - val_loss: 0.6967 - val_acc: 0.8088
Epoch 127/300
5/5 [==============================] - 0s 70ms/step - loss: 0.3835 - acc: 0.8676 - val_loss: 0.7279 - val_acc: 0.8088
Epoch 128/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3932 - acc: 0.8723 - val_loss: 0.7471 - val_acc: 0.8137
Epoch 129/300
5/5 [==============================] - 0s 66ms/step - loss: 0.3788 - acc: 0.8822 - val_loss: 0.7028 - val_acc: 0.8284
Epoch 130/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3546 - acc: 0.8876 - val_loss: 0.6424 - val_acc: 0.8382
Epoch 131/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4244 - acc: 0.8784 - val_loss: 0.6478 - val_acc: 0.8382
Epoch 132/300
5/5 [==============================] - 0s 66ms/step - loss: 0.4120 - acc: 0.8689 - val_loss: 0.6834 - val_acc: 0.8186
Epoch 133/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3585 - acc: 0.8872 - val_loss: 0.6802 - val_acc: 0.8186
Epoch 134/300
5/5 [==============================] - 0s 71ms/step - loss: 0.3782 - acc: 0.8788 - val_loss: 0.6936 - val_acc: 0.8235
Epoch 135/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3459 - acc: 0.8776 - val_loss: 0.6776 - val_acc: 0.8431
Epoch 136/300
5/5 [==============================] - 0s 70ms/step - loss: 0.3176 - acc: 0.9108 - val_loss: 0.6881 - val_acc: 0.8382
Epoch 137/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3205 - acc: 0.9052 - val_loss: 0.6934 - val_acc: 0.8431
Epoch 138/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4079 - acc: 0.8782 - val_loss: 0.6830 - val_acc: 0.8431
Epoch 139/300
5/5 [==============================] - 0s 71ms/step - loss: 0.3465 - acc: 0.8973 - val_loss: 0.6876 - val_acc: 0.8431
Epoch 140/300
5/5 [==============================] - 0s 95ms/step - loss: 0.3935 - acc: 0.8766 - val_loss: 0.7166 - val_acc: 0.8382
Epoch 141/300
5/5 [==============================] - 0s 71ms/step - loss: 0.3905 - acc: 0.8868 - val_loss: 0.7320 - val_acc: 0.8284
Epoch 142/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3482 - acc: 0.8887 - val_loss: 0.7575 - val_acc: 0.8186
Epoch 143/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3567 - acc: 0.8820 - val_loss: 0.7537 - val_acc: 0.8235
Epoch 144/300
5/5 [==============================] - 0s 70ms/step - loss: 0.3427 - acc: 0.8753 - val_loss: 0.7225 - val_acc: 0.8284
Epoch 145/300
5/5 [==============================] - 0s 72ms/step - loss: 0.3894 - acc: 0.8750 - val_loss: 0.7228 - val_acc: 0.8333
Epoch 146/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3585 - acc: 0.8938 - val_loss: 0.6870 - val_acc: 0.8284
Epoch 147/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3450 - acc: 0.8830 - val_loss: 0.6666 - val_acc: 0.8284
Epoch 148/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3174 - acc: 0.8929 - val_loss: 0.6683 - val_acc: 0.8382
Epoch 149/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3357 - acc: 0.9041 - val_loss: 0.6676 - val_acc: 0.8480
Epoch 150/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3597 - acc: 0.8792 - val_loss: 0.6913 - val_acc: 0.8235
Epoch 151/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3043 - acc: 0.9093 - val_loss: 0.7146 - val_acc: 0.8039
Epoch 152/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3935 - acc: 0.8814 - val_loss: 0.6716 - val_acc: 0.8382
Epoch 153/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3200 - acc: 0.8898 - val_loss: 0.6832 - val_acc: 0.8578
Epoch 154/300
5/5 [==============================] - 0s 71ms/step - loss: 0.3738 - acc: 0.8809 - val_loss: 0.6622 - val_acc: 0.8529
Epoch 155/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3784 - acc: 0.8777 - val_loss: 0.6510 - val_acc: 0.8431
Epoch 156/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3565 - acc: 0.8962 - val_loss: 0.6600 - val_acc: 0.8333
Epoch 157/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2935 - acc: 0.9137 - val_loss: 0.6732 - val_acc: 0.8333
Epoch 158/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3130 - acc: 0.9060 - val_loss: 0.7070 - val_acc: 0.8284
Epoch 159/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3386 - acc: 0.8937 - val_loss: 0.6865 - val_acc: 0.8480
Epoch 160/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3310 - acc: 0.9038 - val_loss: 0.7082 - val_acc: 0.8382
Epoch 161/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3232 - acc: 0.8993 - val_loss: 0.7184 - val_acc: 0.8431
Epoch 162/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3062 - acc: 0.9036 - val_loss: 0.7070 - val_acc: 0.8382
Epoch 163/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3374 - acc: 0.8962 - val_loss: 0.7187 - val_acc: 0.8284
Epoch 164/300
5/5 [==============================] - 0s 94ms/step - loss: 0.3249 - acc: 0.8977 - val_loss: 0.7197 - val_acc: 0.8382
Epoch 165/300
5/5 [==============================] - 0s 69ms/step - loss: 0.4041 - acc: 0.8764 - val_loss: 0.7195 - val_acc: 0.8431
Epoch 166/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3356 - acc: 0.9015 - val_loss: 0.7114 - val_acc: 0.8333
Epoch 167/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3006 - acc: 0.9017 - val_loss: 0.6988 - val_acc: 0.8235
Epoch 168/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3368 - acc: 0.8970 - val_loss: 0.6795 - val_acc: 0.8284
Epoch 169/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3049 - acc: 0.9124 - val_loss: 0.6590 - val_acc: 0.8333
Epoch 170/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3652 - acc: 0.8900 - val_loss: 0.6538 - val_acc: 0.8431
Epoch 171/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3153 - acc: 0.9094 - val_loss: 0.6342 - val_acc: 0.8480
Epoch 172/300
5/5 [==============================] - 0s 67ms/step - loss: 0.2881 - acc: 0.9038 - val_loss: 0.6242 - val_acc: 0.8382
Epoch 173/300
5/5 [==============================] - 0s 66ms/step - loss: 0.3764 - acc: 0.8824 - val_loss: 0.6220 - val_acc: 0.8480
Epoch 174/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3352 - acc: 0.8958 - val_loss: 0.6305 - val_acc: 0.8578
Epoch 175/300
5/5 [==============================] - 0s 70ms/step - loss: 0.3450 - acc: 0.9026 - val_loss: 0.6426 - val_acc: 0.8578
Epoch 176/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3471 - acc: 0.8941 - val_loss: 0.6653 - val_acc: 0.8333
Epoch 177/300
5/5 [==============================] - 0s 70ms/step - loss: 0.3373 - acc: 0.8970 - val_loss: 0.6941 - val_acc: 0.8137
Epoch 178/300
5/5 [==============================] - 0s 69ms/step - loss: 0.2986 - acc: 0.9092 - val_loss: 0.6841 - val_acc: 0.8137
Epoch 179/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3466 - acc: 0.9038 - val_loss: 0.6704 - val_acc: 0.8284
Epoch 180/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3661 - acc: 0.8998 - val_loss: 0.6995 - val_acc: 0.8235
Epoch 181/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3163 - acc: 0.8902 - val_loss: 0.6806 - val_acc: 0.8235
Epoch 182/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3278 - acc: 0.9025 - val_loss: 0.6815 - val_acc: 0.8284
Epoch 183/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3343 - acc: 0.8960 - val_loss: 0.6704 - val_acc: 0.8333
Epoch 184/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3172 - acc: 0.8906 - val_loss: 0.6434 - val_acc: 0.8333
Epoch 185/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3679 - acc: 0.8921 - val_loss: 0.6394 - val_acc: 0.8529
Epoch 186/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3030 - acc: 0.9079 - val_loss: 0.6677 - val_acc: 0.8480
Epoch 187/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3102 - acc: 0.8908 - val_loss: 0.6456 - val_acc: 0.8529
Epoch 188/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2763 - acc: 0.9140 - val_loss: 0.6151 - val_acc: 0.8431
Epoch 189/300
5/5 [==============================] - 0s 70ms/step - loss: 0.3298 - acc: 0.8964 - val_loss: 0.6119 - val_acc: 0.8676
Epoch 190/300
5/5 [==============================] - 0s 69ms/step - loss: 0.2928 - acc: 0.9094 - val_loss: 0.6141 - val_acc: 0.8480
Epoch 191/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3066 - acc: 0.9093 - val_loss: 0.6393 - val_acc: 0.8480
Epoch 192/300
5/5 [==============================] - 0s 94ms/step - loss: 0.2988 - acc: 0.9060 - val_loss: 0.6380 - val_acc: 0.8431
Epoch 193/300
5/5 [==============================] - 0s 70ms/step - loss: 0.3654 - acc: 0.8800 - val_loss: 0.6102 - val_acc: 0.8578
Epoch 194/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3482 - acc: 0.8981 - val_loss: 0.6396 - val_acc: 0.8480
Epoch 195/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3029 - acc: 0.9083 - val_loss: 0.6410 - val_acc: 0.8431
Epoch 196/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3276 - acc: 0.8931 - val_loss: 0.6209 - val_acc: 0.8529
Epoch 197/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3252 - acc: 0.8989 - val_loss: 0.6153 - val_acc: 0.8578
Epoch 198/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3542 - acc: 0.8917 - val_loss: 0.6079 - val_acc: 0.8627
Epoch 199/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3191 - acc: 0.9006 - val_loss: 0.6087 - val_acc: 0.8578
Epoch 200/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3077 - acc: 0.9008 - val_loss: 0.6209 - val_acc: 0.8529
Epoch 201/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3045 - acc: 0.9076 - val_loss: 0.6609 - val_acc: 0.8333
Epoch 202/300
5/5 [==============================] - 0s 71ms/step - loss: 0.3053 - acc: 0.9058 - val_loss: 0.7324 - val_acc: 0.8284
Epoch 203/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3107 - acc: 0.8985 - val_loss: 0.7755 - val_acc: 0.8235
Epoch 204/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3047 - acc: 0.8995 - val_loss: 0.7936 - val_acc: 0.7941
Epoch 205/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3131 - acc: 0.9098 - val_loss: 0.6453 - val_acc: 0.8529
Epoch 206/300
5/5 [==============================] - 0s 71ms/step - loss: 0.3795 - acc: 0.8849 - val_loss: 0.6213 - val_acc: 0.8529
Epoch 207/300
5/5 [==============================] - 0s 70ms/step - loss: 0.2903 - acc: 0.9114 - val_loss: 0.6354 - val_acc: 0.8578
Epoch 208/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2599 - acc: 0.9164 - val_loss: 0.6390 - val_acc: 0.8676
Epoch 209/300
5/5 [==============================] - 0s 71ms/step - loss: 0.2954 - acc: 0.9041 - val_loss: 0.6376 - val_acc: 0.8775
Epoch 210/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3250 - acc: 0.9023 - val_loss: 0.6206 - val_acc: 0.8725
Epoch 211/300
5/5 [==============================] - 0s 69ms/step - loss: 0.2694 - acc: 0.9149 - val_loss: 0.6177 - val_acc: 0.8676
Epoch 212/300
5/5 [==============================] - 0s 71ms/step - loss: 0.2920 - acc: 0.9054 - val_loss: 0.6438 - val_acc: 0.8627
Epoch 213/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2861 - acc: 0.9048 - val_loss: 0.7128 - val_acc: 0.8480
Epoch 214/300
5/5 [==============================] - 0s 65ms/step - loss: 0.2916 - acc: 0.9083 - val_loss: 0.7030 - val_acc: 0.8431
Epoch 215/300
5/5 [==============================] - 0s 91ms/step - loss: 0.3288 - acc: 0.8887 - val_loss: 0.6593 - val_acc: 0.8529
Epoch 216/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3802 - acc: 0.8875 - val_loss: 0.6165 - val_acc: 0.8578
Epoch 217/300
5/5 [==============================] - 0s 67ms/step - loss: 0.2905 - acc: 0.9175 - val_loss: 0.6141 - val_acc: 0.8725
Epoch 218/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3078 - acc: 0.9104 - val_loss: 0.6158 - val_acc: 0.8676
Epoch 219/300
5/5 [==============================] - 0s 66ms/step - loss: 0.2757 - acc: 0.9214 - val_loss: 0.6195 - val_acc: 0.8578
Epoch 220/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3159 - acc: 0.8958 - val_loss: 0.6375 - val_acc: 0.8578
Epoch 221/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3348 - acc: 0.8944 - val_loss: 0.6839 - val_acc: 0.8431
Epoch 222/300
5/5 [==============================] - 0s 70ms/step - loss: 0.3239 - acc: 0.8936 - val_loss: 0.6450 - val_acc: 0.8578
Epoch 223/300
5/5 [==============================] - 0s 73ms/step - loss: 0.2783 - acc: 0.9081 - val_loss: 0.6163 - val_acc: 0.8627
Epoch 224/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2852 - acc: 0.9165 - val_loss: 0.6495 - val_acc: 0.8431
Epoch 225/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3073 - acc: 0.8902 - val_loss: 0.6622 - val_acc: 0.8529
Epoch 226/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3127 - acc: 0.9102 - val_loss: 0.6652 - val_acc: 0.8431
Epoch 227/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3248 - acc: 0.9067 - val_loss: 0.6475 - val_acc: 0.8529
Epoch 228/300
5/5 [==============================] - 0s 69ms/step - loss: 0.3155 - acc: 0.9089 - val_loss: 0.6263 - val_acc: 0.8382
Epoch 229/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3585 - acc: 0.8898 - val_loss: 0.6308 - val_acc: 0.8578
Epoch 230/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2812 - acc: 0.9180 - val_loss: 0.6201 - val_acc: 0.8529
Epoch 231/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3070 - acc: 0.8984 - val_loss: 0.6170 - val_acc: 0.8431
Epoch 232/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3433 - acc: 0.8909 - val_loss: 0.6568 - val_acc: 0.8431
Epoch 233/300
5/5 [==============================] - 0s 67ms/step - loss: 0.2844 - acc: 0.9085 - val_loss: 0.6571 - val_acc: 0.8529
Epoch 234/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3122 - acc: 0.9044 - val_loss: 0.6516 - val_acc: 0.8480
Epoch 235/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3047 - acc: 0.9232 - val_loss: 0.6505 - val_acc: 0.8480
Epoch 236/300
5/5 [==============================] - 0s 67ms/step - loss: 0.2913 - acc: 0.9192 - val_loss: 0.6432 - val_acc: 0.8529
Epoch 237/300
5/5 [==============================] - 0s 67ms/step - loss: 0.2505 - acc: 0.9322 - val_loss: 0.6462 - val_acc: 0.8627
Epoch 238/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3033 - acc: 0.9085 - val_loss: 0.6378 - val_acc: 0.8627
Epoch 239/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3418 - acc: 0.8975 - val_loss: 0.6232 - val_acc: 0.8578
Epoch 240/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3167 - acc: 0.9051 - val_loss: 0.6284 - val_acc: 0.8627
Epoch 241/300
5/5 [==============================] - 0s 69ms/step - loss: 0.2637 - acc: 0.9145 - val_loss: 0.6427 - val_acc: 0.8627
Epoch 242/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2678 - acc: 0.9227 - val_loss: 0.6492 - val_acc: 0.8578
Epoch 243/300
5/5 [==============================] - 0s 67ms/step - loss: 0.2730 - acc: 0.9113 - val_loss: 0.6736 - val_acc: 0.8578
Epoch 244/300
5/5 [==============================] - 0s 93ms/step - loss: 0.3013 - acc: 0.9077 - val_loss: 0.7138 - val_acc: 0.8333
Epoch 245/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3151 - acc: 0.9096 - val_loss: 0.7278 - val_acc: 0.8382
Epoch 246/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3307 - acc: 0.9058 - val_loss: 0.6944 - val_acc: 0.8627
Epoch 247/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2631 - acc: 0.9236 - val_loss: 0.6789 - val_acc: 0.8529
Epoch 248/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3215 - acc: 0.9027 - val_loss: 0.6790 - val_acc: 0.8529
Epoch 249/300
5/5 [==============================] - 0s 67ms/step - loss: 0.2968 - acc: 0.9038 - val_loss: 0.6864 - val_acc: 0.8480
Epoch 250/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2998 - acc: 0.9078 - val_loss: 0.7079 - val_acc: 0.8480
Epoch 251/300
5/5 [==============================] - 0s 67ms/step - loss: 0.2375 - acc: 0.9197 - val_loss: 0.7252 - val_acc: 0.8529
Epoch 252/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2955 - acc: 0.9178 - val_loss: 0.7298 - val_acc: 0.8284
Epoch 253/300
5/5 [==============================] - 0s 69ms/step - loss: 0.2946 - acc: 0.9039 - val_loss: 0.7172 - val_acc: 0.8284
Epoch 254/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3051 - acc: 0.9087 - val_loss: 0.6861 - val_acc: 0.8382
Epoch 255/300
5/5 [==============================] - 0s 67ms/step - loss: 0.3563 - acc: 0.8882 - val_loss: 0.6739 - val_acc: 0.8480
Epoch 256/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3144 - acc: 0.8969 - val_loss: 0.6970 - val_acc: 0.8382
Epoch 257/300
5/5 [==============================] - 0s 68ms/step - loss: 0.3210 - acc: 0.9152 - val_loss: 0.7106 - val_acc: 0.8333
Epoch 258/300
5/5 [==============================] - 0s 67ms/step - loss: 0.2523 - acc: 0.9214 - val_loss: 0.7111 - val_acc: 0.8431
Epoch 259/300
5/5 [==============================] - 0s 68ms/step - loss: 0.2552 - acc: 0.9236 - val_loss: 0.7258 - val_acc: 0.8382
让我们绘制学习曲线
display_learning_curves(history)
现在,我们评估 GNN 模型在测试数据拆分上的表现。结果可能因训练样本而异,但是 GNN 模型在测试准确性方面始终优于基线模型。
x_test = test_data.paper_id.to_numpy()
_, test_accuracy = gnn_model.evaluate(x=x_test, y=y_test, verbose=0)
print(f"Test accuracy: {round(test_accuracy * 100, 2)}%")
Test accuracy: 80.19%
让我们将新实例作为节点添加到 node_features
中,并生成到现有节点的链接(引用)。
# First we add the N new_instances as nodes to the graph
# by appending the new_instance to node_features.
num_nodes = node_features.shape[0]
new_node_features = np.concatenate([node_features, new_instances])
# Second we add the M edges (citations) from each new node to a set
# of existing nodes in a particular subject
new_node_indices = [i + num_nodes for i in range(num_classes)]
new_citations = []
for subject_idx, group in papers.groupby("subject"):
subject_papers = list(group.paper_id)
# Select random x papers specific subject.
selected_paper_indices1 = np.random.choice(subject_papers, 5)
# Select random y papers from any subject (where y < x).
selected_paper_indices2 = np.random.choice(list(papers.paper_id), 2)
# Merge the selected paper indices.
selected_paper_indices = np.concatenate(
[selected_paper_indices1, selected_paper_indices2], axis=0
)
# Create edges between a citing paper idx and the selected cited papers.
citing_paper_indx = new_node_indices[subject_idx]
for cited_paper_idx in selected_paper_indices:
new_citations.append([citing_paper_indx, cited_paper_idx])
new_citations = np.array(new_citations).T
new_edges = np.concatenate([edges, new_citations], axis=1)
现在,让我们更新 GNN 模型中的 node_features
和 edges
。
print("Original node_features shape:", gnn_model.node_features.shape)
print("Original edges shape:", gnn_model.edges.shape)
gnn_model.node_features = new_node_features
gnn_model.edges = new_edges
gnn_model.edge_weights = tf.ones(shape=new_edges.shape[1])
print("New node_features shape:", gnn_model.node_features.shape)
print("New edges shape:", gnn_model.edges.shape)
logits = gnn_model.predict(tf.convert_to_tensor(new_node_indices))
probabilities = keras.activations.softmax(tf.convert_to_tensor(logits)).numpy()
display_class_probabilities(probabilities)
Original node_features shape: (2708, 1433)
Original edges shape: (2, 5429)
New node_features shape: (2715, 1433)
New edges shape: (2, 5478)
Instance 1:
- Case_Based: 4.35%
- Genetic_Algorithms: 4.19%
- Neural_Networks: 1.49%
- Probabilistic_Methods: 1.68%
- Reinforcement_Learning: 21.34%
- Rule_Learning: 52.82%
- Theory: 14.14%
Instance 2:
- Case_Based: 0.01%
- Genetic_Algorithms: 99.88%
- Neural_Networks: 0.03%
- Probabilistic_Methods: 0.0%
- Reinforcement_Learning: 0.07%
- Rule_Learning: 0.0%
- Theory: 0.01%
Instance 3:
- Case_Based: 0.1%
- Genetic_Algorithms: 59.18%
- Neural_Networks: 39.17%
- Probabilistic_Methods: 0.38%
- Reinforcement_Learning: 0.55%
- Rule_Learning: 0.08%
- Theory: 0.54%
Instance 4:
- Case_Based: 0.14%
- Genetic_Algorithms: 10.44%
- Neural_Networks: 84.1%
- Probabilistic_Methods: 3.61%
- Reinforcement_Learning: 0.71%
- Rule_Learning: 0.16%
- Theory: 0.85%
Instance 5:
- Case_Based: 0.27%
- Genetic_Algorithms: 0.15%
- Neural_Networks: 0.48%
- Probabilistic_Methods: 0.23%
- Reinforcement_Learning: 0.79%
- Rule_Learning: 0.45%
- Theory: 97.63%
Instance 6:
- Case_Based: 3.12%
- Genetic_Algorithms: 1.35%
- Neural_Networks: 19.72%
- Probabilistic_Methods: 0.48%
- Reinforcement_Learning: 39.56%
- Rule_Learning: 28.0%
- Theory: 7.77%
Instance 7:
- Case_Based: 1.6%
- Genetic_Algorithms: 34.76%
- Neural_Networks: 4.45%
- Probabilistic_Methods: 9.59%
- Reinforcement_Learning: 2.97%
- Rule_Learning: 4.05%
- Theory: 42.6%
请注意,与基线模型相比,预期主题(添加了多个引用的主题)的概率更高。