作者: Khalid Salama
创建日期 2021/05/15
上次修改日期 2021/05/15
描述:使用 Node2Vec 模型从 MovieLens 数据集中生成电影嵌入。
从结构化为图的对象中学习有用的表示对于各种机器学习 (ML) 应用非常有用,例如社交和通信网络分析、生物医学研究和推荐系统。 图表示学习 的目标是学习图节点的嵌入,这些嵌入可用于各种 ML 任务,例如节点标签预测(例如,根据文章的引用对其进行分类)和链接预测(例如,在社交网络中向用户推荐兴趣小组)。
Node2Vec 是一种简单但可扩展且有效的技术,用于通过优化邻域保持目标来学习图中节点的低维嵌入。其目标是学习相邻节点的相似嵌入,并考虑图结构。
给定您的数据项结构化为图(其中项目表示为节点,项目之间的关系表示为边),Node2Vec 的工作原理如下
在本例中,我们将在 MovieLens 数据集的小版本 上演示 Node2Vec 技术,以学习电影嵌入。此类数据集可以通过将电影视为节点并将具有相似用户评分的电影之间创建边来表示为图。学习到的电影嵌入可用于电影推荐或电影类型预测等任务。
此示例需要 networkx
包,可以使用以下命令安装
pip install networkx
import os
from collections import defaultdict
import math
import networkx as nx
import random
from tqdm import tqdm
from zipfile import ZipFile
from urllib.request import urlretrieve
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import matplotlib.pyplot as plt
MovieLens 数据集的小版本包含来自 610 位用户对 9,742 部电影的约 10 万条评分。
首先,让我们下载数据集。下载的文件夹将包含三个数据文件:users.csv
、movies.csv
和 ratings.csv
。在本例中,我们只需要 movies.dat
和 ratings.dat
数据文件。
urlretrieve(
"http://files.grouplens.org/datasets/movielens/ml-latest-small.zip", "movielens.zip"
)
ZipFile("movielens.zip", "r").extractall()
然后,我们将数据加载到 Pandas DataFrame 中并执行一些基本预处理。
# Load movies to a DataFrame.
movies = pd.read_csv("ml-latest-small/movies.csv")
# Create a `movieId` string.
movies["movieId"] = movies["movieId"].apply(lambda x: f"movie_{x}")
# Load ratings to a DataFrame.
ratings = pd.read_csv("ml-latest-small/ratings.csv")
# Convert the `ratings` to floating point
ratings["rating"] = ratings["rating"].apply(lambda x: float(x))
# Create the `movie_id` string.
ratings["movieId"] = ratings["movieId"].apply(lambda x: f"movie_{x}")
print("Movies data shape:", movies.shape)
print("Ratings data shape:", ratings.shape)
Movies data shape: (9742, 3)
Ratings data shape: (100836, 4)
让我们检查 ratings
DataFrame 的样本实例。
ratings.head()
用户ID | 电影ID | 评分 | 时间戳 | |
---|---|---|---|---|
0 | 1 | 电影_1 | 4.0 | 964982703 |
1 | 1 | 电影_3 | 4.0 | 964981247 |
2 | 1 | 电影_6 | 4.0 | 964982224 |
3 | 1 | 电影_47 | 5.0 | 964983815 |
4 | 1 | 电影_50 | 5.0 | 964982931 |
接下来,让我们检查 movies
DataFrame 的样本实例。
movies.head()
电影ID | 标题 | 流派 | |
---|---|---|---|
0 | 电影_1 | 玩具总动员 (1995) | 冒险|动画|儿童|喜剧|奇幻 |
1 | 电影_2 | 勇敢者的游戏 (1995) | 冒险|儿童|奇幻 |
2 | 电影_3 | 怒吼的旧男人 (1995) | 喜剧|浪漫 |
3 | 电影_4 | 等待呼气 (1995) | 喜剧|剧情|浪漫 |
4 | 电影_5 | 新娘的父亲第二部 (1995) | 喜剧 |
为 movies
DataFrame 实现两个实用函数。
def get_movie_title_by_id(movieId):
return list(movies[movies.movieId == movieId].title)[0]
def get_movie_id_by_title(title):
return list(movies[movies.title == title].movieId)[0]
如果同一用户对两部电影的评分都 >= min_rating
,则我们在图中这两部电影节点之间创建一条边。边的权重将基于这两部电影之间的 点互信息,计算公式为:log(xy) - log(x) - log(y) + log(D)
,其中
xy
是有多少用户对电影 x
和电影 y
的评分都 >= min_rating
。x
是有多少用户对电影 x
的评分 >= min_rating
。y
是有多少用户对电影 y
的评分 >= min_rating
。D
是总共 >= min_rating
的电影评分数。min_rating = 5
pair_frequency = defaultdict(int)
item_frequency = defaultdict(int)
# Filter instances where rating is greater than or equal to min_rating.
rated_movies = ratings[ratings.rating >= min_rating]
# Group instances by user.
movies_grouped_by_users = list(rated_movies.groupby("userId"))
for group in tqdm(
movies_grouped_by_users,
position=0,
leave=True,
desc="Compute movie rating frequencies",
):
# Get a list of movies rated by the user.
current_movies = list(group[1]["movieId"])
for i in range(len(current_movies)):
item_frequency[current_movies[i]] += 1
for j in range(i + 1, len(current_movies)):
x = min(current_movies[i], current_movies[j])
y = max(current_movies[i], current_movies[j])
pair_frequency[(x, y)] += 1
Compute movie rating frequencies: 100%|███████████████████████████████████████████████████████████████████████████| 573/573 [00:00<00:00, 1049.83it/s]
为了减少节点之间的边数,我们只在边的权重大于 min_weight
时添加电影之间的边。
min_weight = 10
D = math.log(sum(item_frequency.values()))
# Create the movies undirected graph.
movies_graph = nx.Graph()
# Add weighted edges between movies.
# This automatically adds the movie nodes to the graph.
for pair in tqdm(
pair_frequency, position=0, leave=True, desc="Creating the movie graph"
):
x, y = pair
xy_frequency = pair_frequency[pair]
x_frequency = item_frequency[x]
y_frequency = item_frequency[y]
pmi = math.log(xy_frequency) - math.log(x_frequency) - math.log(y_frequency) + D
weight = pmi * xy_frequency
# Only include edges with weight >= min_weight.
if weight >= min_weight:
movies_graph.add_edge(x, y, weight=weight)
Creating the movie graph: 100%|███████████████████████████████████████████████████████████████████████████| 298586/298586 [00:00<00:00, 552893.62it/s]
让我们显示图中节点和边的总数。请注意,节点数小于电影总数,因为只添加了与其他电影有边的电影。
print("Total number of graph nodes:", movies_graph.number_of_nodes())
print("Total number of graph edges:", movies_graph.number_of_edges())
Total number of graph nodes: 1405
Total number of graph edges: 40043
让我们显示图中的平均节点度数(邻居数)。
degrees = []
for node in movies_graph.nodes:
degrees.append(movies_graph.degree[node])
print("Average node degree:", round(sum(degrees) / len(degrees), 2))
Average node degree: 57.0
词汇表是图中的节点(电影 ID)。
vocabulary = ["NA"] + list(movies_graph.nodes)
vocabulary_lookup = {token: idx for idx, token in enumerate(vocabulary)}
随机游走从给定节点开始,并随机选择一个邻居节点移动到。如果边是有权重的,则相对于当前节点与其邻居之间边的权重概率性地选择邻居。此过程重复 num_steps
次以生成一系列相关节点。
有偏随机游走 通过引入以下两个参数来平衡广度优先采样(仅访问局部邻居)和深度优先采样(访问远处邻居):
p
):控制在游走中立即重新访问节点的可能性。将其设置为高值会鼓励适度的探索,而将其设置为低值会使游走保持在本地。q
):允许搜索区分内部和外部节点。将其设置为高值会使随机游走偏向于局部节点,而将其设置为低值会使游走偏向于访问更远的节点。def next_step(graph, previous, current, p, q):
neighbors = list(graph.neighbors(current))
weights = []
# Adjust the weights of the edges to the neighbors with respect to p and q.
for neighbor in neighbors:
if neighbor == previous:
# Control the probability to return to the previous node.
weights.append(graph[current][neighbor]["weight"] / p)
elif graph.has_edge(neighbor, previous):
# The probability of visiting a local node.
weights.append(graph[current][neighbor]["weight"])
else:
# Control the probability to move forward.
weights.append(graph[current][neighbor]["weight"] / q)
# Compute the probabilities of visiting each neighbor.
weight_sum = sum(weights)
probabilities = [weight / weight_sum for weight in weights]
# Probabilistically select a neighbor to visit.
next = np.random.choice(neighbors, size=1, p=probabilities)[0]
return next
def random_walk(graph, num_walks, num_steps, p, q):
walks = []
nodes = list(graph.nodes())
# Perform multiple iterations of the random walk.
for walk_iteration in range(num_walks):
random.shuffle(nodes)
for node in tqdm(
nodes,
position=0,
leave=True,
desc=f"Random walks iteration {walk_iteration + 1} of {num_walks}",
):
# Start the walk with a random node from the graph.
walk = [node]
# Randomly walk for num_steps.
while len(walk) < num_steps:
current = walk[-1]
previous = walk[-2] if len(walk) > 1 else None
# Compute the next node to visit.
next = next_step(graph, previous, current, p, q)
walk.append(next)
# Replace node ids (movie ids) in the walk with token ids.
walk = [vocabulary_lookup[token] for token in walk]
# Add the walk to the generated sequence.
walks.append(walk)
return walks
您可以探索 p
和 q
的不同配置,以获得相关电影的不同结果。
# Random walk return parameter.
p = 1
# Random walk in-out parameter.
q = 1
# Number of iterations of random walks.
num_walks = 5
# Number of steps of each random walk.
num_steps = 10
walks = random_walk(movies_graph, num_walks, num_steps, p, q)
print("Number of walks generated:", len(walks))
Random walks iteration 1 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 291.76it/s]
Random walks iteration 2 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 302.56it/s]
Random walks iteration 3 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 294.52it/s]
Random walks iteration 4 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 304.06it/s]
Random walks iteration 5 of 5: 100%|█████████████████████████████████████████████████████████████████████████████| 1405/1405 [00:04<00:00, 302.15it/s]
Number of walks generated: 7025
为了训练 Skip-Gram 模型,我们使用生成的游走来创建正负训练样本。每个样本包含以下特征
目标
:游走序列中的电影。上下文
:游走序列中的另一部电影。权重
:这两部电影在游走序列中出现的次数。标签
:如果这两部电影是从游走序列中采样的,则标签为 1,否则(即,如果随机采样)标签为 0。def generate_examples(sequences, window_size, num_negative_samples, vocabulary_size):
example_weights = defaultdict(int)
# Iterate over all sequences (walks).
for sequence in tqdm(
sequences,
position=0,
leave=True,
desc=f"Generating positive and negative examples",
):
# Generate positive and negative skip-gram pairs for a sequence (walk).
pairs, labels = keras.preprocessing.sequence.skipgrams(
sequence,
vocabulary_size=vocabulary_size,
window_size=window_size,
negative_samples=num_negative_samples,
)
for idx in range(len(pairs)):
pair = pairs[idx]
label = labels[idx]
target, context = min(pair[0], pair[1]), max(pair[0], pair[1])
if target == context:
continue
entry = (target, context, label)
example_weights[entry] += 1
targets, contexts, labels, weights = [], [], [], []
for entry in example_weights:
weight = example_weights[entry]
target, context, label = entry
targets.append(target)
contexts.append(context)
labels.append(label)
weights.append(weight)
return np.array(targets), np.array(contexts), np.array(labels), np.array(weights)
num_negative_samples = 4
targets, contexts, labels, weights = generate_examples(
sequences=walks,
window_size=num_steps,
num_negative_samples=num_negative_samples,
vocabulary_size=len(vocabulary),
)
Generating positive and negative examples: 100%|██████████████████████████████████████████████████████████████████| 7025/7025 [00:11<00:00, 617.64it/s]
让我们显示输出的形状
print(f"Targets shape: {targets.shape}")
print(f"Contexts shape: {contexts.shape}")
print(f"Labels shape: {labels.shape}")
print(f"Weights shape: {weights.shape}")
Targets shape: (881412,)
Contexts shape: (881412,)
Labels shape: (881412,)
Weights shape: (881412,)
tf.data.Dataset
对象batch_size = 1024
def create_dataset(targets, contexts, labels, weights, batch_size):
inputs = {
"target": targets,
"context": contexts,
}
dataset = tf.data.Dataset.from_tensor_slices((inputs, labels, weights))
dataset = dataset.shuffle(buffer_size=batch_size * 2)
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.prefetch(tf.data.AUTOTUNE)
return dataset
dataset = create_dataset(
targets=targets,
contexts=contexts,
labels=labels,
weights=weights,
batch_size=batch_size,
)
我们的 Skip-Gram 是一个简单的二元分类模型,其工作原理如下
目标
电影的嵌入。上下文
电影的嵌入。learning_rate = 0.001
embedding_dim = 50
num_epochs = 10
def create_model(vocabulary_size, embedding_dim):
inputs = {
"target": layers.Input(name="target", shape=(), dtype="int32"),
"context": layers.Input(name="context", shape=(), dtype="int32"),
}
# Initialize item embeddings.
embed_item = layers.Embedding(
input_dim=vocabulary_size,
output_dim=embedding_dim,
embeddings_initializer="he_normal",
embeddings_regularizer=keras.regularizers.l2(1e-6),
name="item_embeddings",
)
# Lookup embeddings for target.
target_embeddings = embed_item(inputs["target"])
# Lookup embeddings for context.
context_embeddings = embed_item(inputs["context"])
# Compute dot similarity between target and context embeddings.
logits = layers.Dot(axes=1, normalize=False, name="dot_similarity")(
[target_embeddings, context_embeddings]
)
# Create the model.
model = keras.Model(inputs=inputs, outputs=logits)
return model
我们实例化模型并对其进行编译。
model = create_model(len(vocabulary), embedding_dim)
model.compile(
optimizer=keras.optimizers.Adam(learning_rate),
loss=keras.losses.BinaryCrossentropy(from_logits=True),
)
让我们绘制模型图。
keras.utils.plot_model(
model,
show_shapes=True,
show_dtype=True,
show_layer_names=True,
)
现在我们使用 dataset
训练模型。
history = model.fit(dataset, epochs=num_epochs)
Epoch 1/10
860/860 [==============================] - 5s 5ms/step - loss: 2.4527
Epoch 2/10
860/860 [==============================] - 4s 5ms/step - loss: 2.3431
Epoch 3/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3351
Epoch 4/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3301
Epoch 5/10
860/860 [==============================] - 4s 5ms/step - loss: 2.3259
Epoch 6/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3223
Epoch 7/10
860/860 [==============================] - 4s 5ms/step - loss: 2.3191
Epoch 8/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3160
Epoch 9/10
860/860 [==============================] - 4s 4ms/step - loss: 2.3130
Epoch 10/10
860/860 [==============================] - 4s 5ms/step - loss: 2.3104
最后,我们绘制学习历史图。
plt.plot(history.history["loss"])
plt.ylabel("loss")
plt.xlabel("epoch")
plt.show()
movie_embeddings = model.get_layer("item_embeddings").get_weights()[0]
print("Embeddings shape:", movie_embeddings.shape)
Embeddings shape: (1406, 50)
定义一个包含一些电影的列表,称为 query_movies
。
query_movies = [
"Matrix, The (1999)",
"Star Wars: Episode IV - A New Hope (1977)",
"Lion King, The (1994)",
"Terminator 2: Judgment Day (1991)",
"Godfather, The (1972)",
]
获取 query_movies
中电影的嵌入。
query_embeddings = []
for movie_title in query_movies:
movieId = get_movie_id_by_title(movie_title)
token_id = vocabulary_lookup[movieId]
movie_embedding = movie_embeddings[token_id]
query_embeddings.append(movie_embedding)
query_embeddings = np.array(query_embeddings)
计算 query_movies
中电影的嵌入与所有其他电影的嵌入之间的 余弦相似度,然后为每个电影选择前 k 个。
similarities = tf.linalg.matmul(
tf.math.l2_normalize(query_embeddings),
tf.math.l2_normalize(movie_embeddings),
transpose_b=True,
)
_, indices = tf.math.top_k(similarities, k=5)
indices = indices.numpy().tolist()
显示 query_movies
中的前 k 个相关电影。
for idx, title in enumerate(query_movies):
print(title)
print("".rjust(len(title), "-"))
similar_tokens = indices[idx]
for token in similar_tokens:
similar_movieId = vocabulary[token]
similar_title = get_movie_title_by_id(similar_movieId)
print(f"- {similar_title}")
print()
Matrix, The (1999)
------------------
- Matrix, The (1999)
- Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)
- Schindler's List (1993)
- Star Wars: Episode IV - A New Hope (1977)
- Lord of the Rings: The Fellowship of the Ring, The (2001)
Star Wars: Episode IV - A New Hope (1977)
-----------------------------------------
- Star Wars: Episode IV - A New Hope (1977)
- Schindler's List (1993)
- Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981)
- Matrix, The (1999)
- Pulp Fiction (1994)
Lion King, The (1994)
---------------------
- Lion King, The (1994)
- Jurassic Park (1993)
- Independence Day (a.k.a. ID4) (1996)
- Beauty and the Beast (1991)
- Mrs. Doubtfire (1993)
Terminator 2: Judgment Day (1991)
---------------------------------
- Schindler's List (1993)
- Jurassic Park (1993)
- Terminator 2: Judgment Day (1991)
- Star Wars: Episode IV - A New Hope (1977)
- Back to the Future (1985)
Godfather, The (1972)
---------------------
- Apocalypse Now (1979)
- Fargo (1996)
- Godfather, The (1972)
- Schindler's List (1993)
- Casablanca (1942)
import io
out_v = io.open("embeddings.tsv", "w", encoding="utf-8")
out_m = io.open("metadata.tsv", "w", encoding="utf-8")
for idx, movie_id in enumerate(vocabulary[1:]):
movie_title = list(movies[movies.movieId == movie_id].title)[0]
vector = movie_embeddings[idx]
out_v.write("\t".join([str(x) for x in vector]) + "\n")
out_m.write(movie_title + "\n")
out_v.close()
out_m.close()
下载 embeddings.tsv
和 metadata.tsv
,以便在 嵌入投影仪 中分析获得的嵌入。
HuggingFace 上提供的示例
训练后的模型 | 演示 |
---|---|