代码示例 / 图数据 / 用于节点分类的图注意力网络 (GAT)

用于节点分类的图注意力网络 (GAT)

作者: akensert
创建日期 2021/09/13
最后修改日期 2021/12/26
描述: 图注意力网络 (GAT) 用于节点分类的实现。

ⓘ 此示例使用 Keras 2

在 Colab 中查看 GitHub 源码


简介

图神经网络是处理图结构数据的首选神经网络架构(例如,社交网络或分子结构),比全连接网络或卷积网络能产生更好的结果。

在本教程中,我们将实现一种称为图注意力网络 (GAT) 的特定图神经网络,用于根据论文的引用类型来预测科学论文的标签(使用Cora数据集)。

参考文献

有关 GAT 的更多信息,请参阅原始论文 Graph Attention Networks 以及 DGL 的图注意力网络文档。

导入包

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
import pandas as pd
import os
import warnings

warnings.filterwarnings("ignore")
pd.set_option("display.max_columns", 6)
pd.set_option("display.max_rows", 6)
np.random.seed(2)

获取数据集

Cora 数据集的准备过程遵循 图神经网络节点分类教程。有关数据集和探索性数据分析的更多详细信息,请参阅该教程。简而言之,Cora 数据集包含两个文件:cora.cites,其中包含论文之间的有向链接(引用);cora.content,其中包含相应论文的特征和七个标签之一(论文的主题)。

zip_file = keras.utils.get_file(
    fname="cora.tgz",
    origin="https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz",
    extract=True,
)

data_dir = os.path.join(os.path.dirname(zip_file), "cora")

citations = pd.read_csv(
    os.path.join(data_dir, "cora.cites"),
    sep="\t",
    header=None,
    names=["target", "source"],
)

papers = pd.read_csv(
    os.path.join(data_dir, "cora.content"),
    sep="\t",
    header=None,
    names=["paper_id"] + [f"term_{idx}" for idx in range(1433)] + ["subject"],
)

class_values = sorted(papers["subject"].unique())
class_idx = {name: id for id, name in enumerate(class_values)}
paper_idx = {name: idx for idx, name in enumerate(sorted(papers["paper_id"].unique()))}

papers["paper_id"] = papers["paper_id"].apply(lambda name: paper_idx[name])
citations["source"] = citations["source"].apply(lambda name: paper_idx[name])
citations["target"] = citations["target"].apply(lambda name: paper_idx[name])
papers["subject"] = papers["subject"].apply(lambda value: class_idx[value])

print(citations)

print(papers)
      target  source
0          0      21
1          0     905
2          0     906
...      ...     ...
5426    1874    2586
5427    1876    1874
5428    1897    2707
[5429 rows x 2 columns]
      paper_id  term_0  term_1  ...  term_1431  term_1432  subject
0          462       0       0  ...          0          0        2
1         1911       0       0  ...          0          0        5
2         2002       0       0  ...          0          0        4
...        ...     ...     ...  ...        ...        ...      ...
2705      2372       0       0  ...          0          0        1
2706       955       0       0  ...          0          0        0
2707       376       0       0  ...          0          0        2
[2708 rows x 1435 columns]

划分数据集

# Obtain random indices
random_indices = np.random.permutation(range(papers.shape[0]))

# 50/50 split
train_data = papers.iloc[random_indices[: len(random_indices) // 2]]
test_data = papers.iloc[random_indices[len(random_indices) // 2 :]]

准备图数据

# Obtain paper indices which will be used to gather node states
# from the graph later on when training the model
train_indices = train_data["paper_id"].to_numpy()
test_indices = test_data["paper_id"].to_numpy()

# Obtain ground truth labels corresponding to each paper_id
train_labels = train_data["subject"].to_numpy()
test_labels = test_data["subject"].to_numpy()

# Define graph, namely an edge tensor and a node feature tensor
edges = tf.convert_to_tensor(citations[["target", "source"]])
node_states = tf.convert_to_tensor(papers.sort_values("paper_id").iloc[:, 1:-1])

# Print shapes of the graph
print("Edges shape:\t\t", edges.shape)
print("Node features shape:", node_states.shape)
Edges shape:         (5429, 2)
Node features shape: (2708, 1433)

构建模型

GAT 的输入是一个图(即边张量和节点特征张量),输出是[更新后的]节点状态。节点状态是指,对于每个目标节点,N跳(N 由 GAT 层数决定)的邻域聚合信息。重要的是,与图卷积网络 (GCN) 不同,GAT 使用注意力机制来聚合来自邻居节点(或源节点)的信息。换句话说,GAT 不是简单地对源节点(源论文)到目标节点(目标论文)的节点状态进行平均/求和,而是首先对每个源节点状态应用归一化的注意力分数,然后进行求和。

(多头)图注意力层

GAT 模型实现了多头图注意力层。MultiHeadGraphAttention层只是多个图注意力层(GraphAttention)的连接(或平均),每个层都有独立的权重WGraphAttention层执行以下操作:

考虑输入节点状态h^{l},通过W^{l}进行线性变换,得到z^{l}

对于每个目标节点

  1. 计算所有j的配对注意力分数a^{l}^{T}(z^{l}_{i}||z^{l}_{j}),得到e_{ij}(对于所有j)。||表示连接,_{i}对应目标节点,_{j}对应给定的1跳邻居/源节点。
  2. 通过 softmax 归一化e_{ij},使得到达目标节点的入边注意力分数之和(sum_{k}{e_{norm}_{ik}})为 1。
  3. 将注意力分数e_{norm}_{ij}应用于z_{j},并将其添加到新的目标节点状态h^{l+1}_{i}中,对于所有j
class GraphAttention(layers.Layer):
    def __init__(
        self,
        units,
        kernel_initializer="glorot_uniform",
        kernel_regularizer=None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.units = units
        self.kernel_initializer = keras.initializers.get(kernel_initializer)
        self.kernel_regularizer = keras.regularizers.get(kernel_regularizer)

    def build(self, input_shape):

        self.kernel = self.add_weight(
            shape=(input_shape[0][-1], self.units),
            trainable=True,
            initializer=self.kernel_initializer,
            regularizer=self.kernel_regularizer,
            name="kernel",
        )
        self.kernel_attention = self.add_weight(
            shape=(self.units * 2, 1),
            trainable=True,
            initializer=self.kernel_initializer,
            regularizer=self.kernel_regularizer,
            name="kernel_attention",
        )
        self.built = True

    def call(self, inputs):
        node_states, edges = inputs

        # Linearly transform node states
        node_states_transformed = tf.matmul(node_states, self.kernel)

        # (1) Compute pair-wise attention scores
        node_states_expanded = tf.gather(node_states_transformed, edges)
        node_states_expanded = tf.reshape(
            node_states_expanded, (tf.shape(edges)[0], -1)
        )
        attention_scores = tf.nn.leaky_relu(
            tf.matmul(node_states_expanded, self.kernel_attention)
        )
        attention_scores = tf.squeeze(attention_scores, -1)

        # (2) Normalize attention scores
        attention_scores = tf.math.exp(tf.clip_by_value(attention_scores, -2, 2))
        attention_scores_sum = tf.math.unsorted_segment_sum(
            data=attention_scores,
            segment_ids=edges[:, 0],
            num_segments=tf.reduce_max(edges[:, 0]) + 1,
        )
        attention_scores_sum = tf.repeat(
            attention_scores_sum, tf.math.bincount(tf.cast(edges[:, 0], "int32"))
        )
        attention_scores_norm = attention_scores / attention_scores_sum

        # (3) Gather node states of neighbors, apply attention scores and aggregate
        node_states_neighbors = tf.gather(node_states_transformed, edges[:, 1])
        out = tf.math.unsorted_segment_sum(
            data=node_states_neighbors * attention_scores_norm[:, tf.newaxis],
            segment_ids=edges[:, 0],
            num_segments=tf.shape(node_states)[0],
        )
        return out


class MultiHeadGraphAttention(layers.Layer):
    def __init__(self, units, num_heads=8, merge_type="concat", **kwargs):
        super().__init__(**kwargs)
        self.num_heads = num_heads
        self.merge_type = merge_type
        self.attention_layers = [GraphAttention(units) for _ in range(num_heads)]

    def call(self, inputs):
        atom_features, pair_indices = inputs

        # Obtain outputs from each attention head
        outputs = [
            attention_layer([atom_features, pair_indices])
            for attention_layer in self.attention_layers
        ]
        # Concatenate or average the node states from each head
        if self.merge_type == "concat":
            outputs = tf.concat(outputs, axis=-1)
        else:
            outputs = tf.reduce_mean(tf.stack(outputs, axis=-1), axis=-1)
        # Activate and return node states
        return tf.nn.relu(outputs)

使用自定义的train_steptest_steppredict_step方法实现训练逻辑

请注意,GAT 模型在所有阶段(训练、验证和测试)都操作于整个图(即node_statesedges)。因此,node_statesedges被传递给keras.Model的构造函数并用作属性。阶段之间的区别在于索引(和标签),它们用于收集特定的输出(tf.gather(outputs, indices))。

class GraphAttentionNetwork(keras.Model):
    def __init__(
        self,
        node_states,
        edges,
        hidden_units,
        num_heads,
        num_layers,
        output_dim,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.node_states = node_states
        self.edges = edges
        self.preprocess = layers.Dense(hidden_units * num_heads, activation="relu")
        self.attention_layers = [
            MultiHeadGraphAttention(hidden_units, num_heads) for _ in range(num_layers)
        ]
        self.output_layer = layers.Dense(output_dim)

    def call(self, inputs):
        node_states, edges = inputs
        x = self.preprocess(node_states)
        for attention_layer in self.attention_layers:
            x = attention_layer([x, edges]) + x
        outputs = self.output_layer(x)
        return outputs

    def train_step(self, data):
        indices, labels = data

        with tf.GradientTape() as tape:
            # Forward pass
            outputs = self([self.node_states, self.edges])
            # Compute loss
            loss = self.compiled_loss(labels, tf.gather(outputs, indices))
        # Compute gradients
        grads = tape.gradient(loss, self.trainable_weights)
        # Apply gradients (update weights)
        optimizer.apply_gradients(zip(grads, self.trainable_weights))
        # Update metric(s)
        self.compiled_metrics.update_state(labels, tf.gather(outputs, indices))

        return {m.name: m.result() for m in self.metrics}

    def predict_step(self, data):
        indices = data
        # Forward pass
        outputs = self([self.node_states, self.edges])
        # Compute probabilities
        return tf.nn.softmax(tf.gather(outputs, indices))

    def test_step(self, data):
        indices, labels = data
        # Forward pass
        outputs = self([self.node_states, self.edges])
        # Compute loss
        loss = self.compiled_loss(labels, tf.gather(outputs, indices))
        # Update metric(s)
        self.compiled_metrics.update_state(labels, tf.gather(outputs, indices))

        return {m.name: m.result() for m in self.metrics}

训练和评估

# Define hyper-parameters
HIDDEN_UNITS = 100
NUM_HEADS = 8
NUM_LAYERS = 3
OUTPUT_DIM = len(class_values)

NUM_EPOCHS = 100
BATCH_SIZE = 256
VALIDATION_SPLIT = 0.1
LEARNING_RATE = 3e-1
MOMENTUM = 0.9

loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = keras.optimizers.SGD(LEARNING_RATE, momentum=MOMENTUM)
accuracy_fn = keras.metrics.SparseCategoricalAccuracy(name="acc")
early_stopping = keras.callbacks.EarlyStopping(
    monitor="val_acc", min_delta=1e-5, patience=5, restore_best_weights=True
)

# Build model
gat_model = GraphAttentionNetwork(
    node_states, edges, HIDDEN_UNITS, NUM_HEADS, NUM_LAYERS, OUTPUT_DIM
)

# Compile model
gat_model.compile(loss=loss_fn, optimizer=optimizer, metrics=[accuracy_fn])

gat_model.fit(
    x=train_indices,
    y=train_labels,
    validation_split=VALIDATION_SPLIT,
    batch_size=BATCH_SIZE,
    epochs=NUM_EPOCHS,
    callbacks=[early_stopping],
    verbose=2,
)

_, test_accuracy = gat_model.evaluate(x=test_indices, y=test_labels, verbose=0)

print("--" * 38 + f"\nTest Accuracy {test_accuracy*100:.1f}%")
Epoch 1/100
5/5 - 26s - loss: 1.8418 - acc: 0.2980 - val_loss: 1.5117 - val_acc: 0.4044 - 26s/epoch - 5s/step
Epoch 2/100
5/5 - 6s - loss: 1.2422 - acc: 0.5640 - val_loss: 1.0407 - val_acc: 0.6471 - 6s/epoch - 1s/step
Epoch 3/100
5/5 - 5s - loss: 0.7092 - acc: 0.7906 - val_loss: 0.8201 - val_acc: 0.7868 - 5s/epoch - 996ms/step
Epoch 4/100
5/5 - 5s - loss: 0.4768 - acc: 0.8604 - val_loss: 0.7451 - val_acc: 0.8088 - 5s/epoch - 934ms/step
Epoch 5/100
5/5 - 5s - loss: 0.2641 - acc: 0.9294 - val_loss: 0.7499 - val_acc: 0.8088 - 5s/epoch - 945ms/step
Epoch 6/100
5/5 - 5s - loss: 0.1487 - acc: 0.9663 - val_loss: 0.6803 - val_acc: 0.8382 - 5s/epoch - 967ms/step
Epoch 7/100
5/5 - 5s - loss: 0.0970 - acc: 0.9811 - val_loss: 0.6688 - val_acc: 0.8088 - 5s/epoch - 960ms/step
Epoch 8/100
5/5 - 5s - loss: 0.0597 - acc: 0.9934 - val_loss: 0.7295 - val_acc: 0.8162 - 5s/epoch - 981ms/step
Epoch 9/100
5/5 - 5s - loss: 0.0398 - acc: 0.9967 - val_loss: 0.7551 - val_acc: 0.8309 - 5s/epoch - 991ms/step
Epoch 10/100
5/5 - 5s - loss: 0.0312 - acc: 0.9984 - val_loss: 0.7666 - val_acc: 0.8309 - 5s/epoch - 987ms/step
Epoch 11/100
5/5 - 5s - loss: 0.0219 - acc: 0.9992 - val_loss: 0.7726 - val_acc: 0.8309 - 5s/epoch - 1s/step
----------------------------------------------------------------------------
Test Accuracy 76.5%

预测(概率)

test_probs = gat_model.predict(x=test_indices)

mapping = {v: k for (k, v) in class_idx.items()}

for i, (probs, label) in enumerate(zip(test_probs[:10], test_labels[:10])):
    print(f"Example {i+1}: {mapping[label]}")
    for j, c in zip(probs, class_idx.keys()):
        print(f"\tProbability of {c: <24} = {j*100:7.3f}%")
    print("---" * 20)
Example 1: Probabilistic_Methods
    Probability of Case_Based               =   0.919%
    Probability of Genetic_Algorithms       =   0.180%
    Probability of Neural_Networks          =  37.896%
    Probability of Probabilistic_Methods    =  59.801%
    Probability of Reinforcement_Learning   =   0.705%
    Probability of Rule_Learning            =   0.044%
    Probability of Theory                   =   0.454%
------------------------------------------------------------
Example 2: Genetic_Algorithms
    Probability of Case_Based               =   0.005%
    Probability of Genetic_Algorithms       =  99.993%
    Probability of Neural_Networks          =   0.001%
    Probability of Probabilistic_Methods    =   0.000%
    Probability of Reinforcement_Learning   =   0.000%
    Probability of Rule_Learning            =   0.000%
    Probability of Theory                   =   0.000%
------------------------------------------------------------
Example 3: Theory
    Probability of Case_Based               =   8.151%
    Probability of Genetic_Algorithms       =   1.021%
    Probability of Neural_Networks          =   0.569%
    Probability of Probabilistic_Methods    =  40.220%
    Probability of Reinforcement_Learning   =   0.792%
    Probability of Rule_Learning            =   6.910%
    Probability of Theory                   =  42.337%
------------------------------------------------------------
Example 4: Neural_Networks
    Probability of Case_Based               =   0.097%
    Probability of Genetic_Algorithms       =   0.026%
    Probability of Neural_Networks          =  93.539%
    Probability of Probabilistic_Methods    =   6.206%
    Probability of Reinforcement_Learning   =   0.028%
    Probability of Rule_Learning            =   0.010%
    Probability of Theory                   =   0.094%
------------------------------------------------------------
Example 5: Theory
    Probability of Case_Based               =  25.259%
    Probability of Genetic_Algorithms       =   4.381%
    Probability of Neural_Networks          =  11.776%
    Probability of Probabilistic_Methods    =  15.053%
    Probability of Reinforcement_Learning   =   1.571%
    Probability of Rule_Learning            =  23.589%
    Probability of Theory                   =  18.370%
------------------------------------------------------------
Example 6: Genetic_Algorithms
    Probability of Case_Based               =   0.000%
    Probability of Genetic_Algorithms       = 100.000%
    Probability of Neural_Networks          =   0.000%
    Probability of Probabilistic_Methods    =   0.000%
    Probability of Reinforcement_Learning   =   0.000%
    Probability of Rule_Learning            =   0.000%
    Probability of Theory                   =   0.000%
------------------------------------------------------------
Example 7: Neural_Networks
    Probability of Case_Based               =   0.296%
    Probability of Genetic_Algorithms       =   0.291%
    Probability of Neural_Networks          =  93.419%
    Probability of Probabilistic_Methods    =   5.696%
    Probability of Reinforcement_Learning   =   0.050%
    Probability of Rule_Learning            =   0.072%
    Probability of Theory                   =   0.177%
------------------------------------------------------------
Example 8: Genetic_Algorithms
    Probability of Case_Based               =   0.000%
    Probability of Genetic_Algorithms       = 100.000%
    Probability of Neural_Networks          =   0.000%
    Probability of Probabilistic_Methods    =   0.000%
    Probability of Reinforcement_Learning   =   0.000%
    Probability of Rule_Learning            =   0.000%
    Probability of Theory                   =   0.000%
------------------------------------------------------------
Example 9: Theory
    Probability of Case_Based               =   4.103%
    Probability of Genetic_Algorithms       =   5.217%
    Probability of Neural_Networks          =  14.532%
    Probability of Probabilistic_Methods    =  66.747%
    Probability of Reinforcement_Learning   =   3.008%
    Probability of Rule_Learning            =   1.782%
    Probability of Theory                   =   4.611%
------------------------------------------------------------
Example 10: Case_Based
    Probability of Case_Based               =  99.566%
    Probability of Genetic_Algorithms       =   0.017%
    Probability of Neural_Networks          =   0.016%
    Probability of Probabilistic_Methods    =   0.155%
    Probability of Reinforcement_Learning   =   0.026%
    Probability of Rule_Learning            =   0.192%
    Probability of Theory                   =   0.028%
------------------------------------------------------------

结论

结果看起来不错!GAT 模型似乎能以大约 80% 的准确率正确预测论文的主题,这是基于它们引用的内容。可以通过微调 GAT 的超参数来进一步改进。例如,尝试更改层数、隐藏单元数,或者优化器/学习率;添加正则化(例如,dropout);或者修改预处理步骤。我们还可以尝试实现自环(即,论文 X 引用论文 X)和/或使图无向