作者: András Béres
创建日期 2021/10/28
最后修改日期 2025/01/23
描述: 使用 Caltech Birds 数据集从有限的数据中生成图像。
生成对抗网络 (GAN) 是一类流行的生成式深度学习模型,常用于图像生成。它们由一对相互对抗的神经网络组成,称为判别器和生成器。判别器的任务是区分真实图像和生成的(伪造的)图像,而生成器网络则试图通过生成越来越逼真的图像来欺骗判别器。然而,如果生成器太容易或太难被欺骗,它可能无法为生成器提供有用的学习信号,因此训练 GAN 通常被认为是一项困难的任务。
数据增强是深度学习中常用的一种技术,它是指对输入数据随机应用语义保留变换,以生成多个逼真的版本,从而有效地增加可用的训练数据量。最简单的例子是左右翻转图像,它在保留图像内容的同时生成第二个独特的训练样本。数据增强通常用于监督学习中,以防止过拟合并增强泛化能力。
StyleGAN2-ADA 的作者表明,判别器过拟合可能是 GAN 中的一个问题,尤其是在只有少量训练数据可用时。他们提出了自适应判别器增强来缓解这个问题。
然而,将数据增强应用于 GAN 并非易事。由于生成器是使用判别器的梯度更新的,如果生成的图像被增强,则增强管道必须是可微分的,并且还必须与 GPU 兼容以提高计算效率。幸运的是,Keras 图像增强层 满足这两个要求,因此非常适合此任务。
在生成模型中使用数据增强时,一个可能的困难是 “泄露增强”(第 2.2 节) 的问题,即模型生成已经增强的图像。 这意味着它无法将增强与底层数据分布分离开来,这可能是由于使用了不可逆的数据转换造成的。 例如,如果以相等的概率执行 0 度、90 度、180 度或 270 度旋转,则图像的原始方向将无法推断,并且此信息将被破坏。
使数据增强可逆的一个简单技巧是仅以一定的概率应用它们。 这样,图像的原始版本将更常见,并且可以推断出数据分布。 通过正确选择此概率,可以有效地正则化判别器,而不会使增强泄露。
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_datasets as tfds
import keras
from keras import ops
from keras import layers
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1738798965.367584 17795 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1738798965.374084 17795 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
# data
num_epochs = 10 # train for 400 epochs for good results
image_size = 64
# resolution of Kernel Inception Distance measurement, see related section
kid_image_size = 75
padding = 0.25
dataset_name = "caltech_birds2011"
# adaptive discriminator augmentation
max_translation = 0.125
max_rotation = 0.125
max_zoom = 0.25
target_accuracy = 0.85
integration_steps = 1000
# architecture
noise_size = 64
depth = 4
width = 128
leaky_relu_slope = 0.2
dropout_rate = 0.4
# optimization
batch_size = 128
learning_rate = 2e-4
beta_1 = 0.5 # not using the default value of 0.9 is important
ema = 0.99
在此示例中,我们将使用 Caltech Birds (2011) 数据集来生成鸟类图像,这是一个多样化的自然数据集,其中包含少于 6000 张图像用于训练。 当处理如此少量的数据时,必须格外小心以尽可能保持高数据质量。 在此示例中,我们使用提供的鸟类边界框将它们裁剪成正方形,同时在可能的情况下保留其纵横比。
def round_to_int(float_value):
return ops.cast(ops.round(float_value), "int32")
def preprocess_image(data):
# unnormalize bounding box coordinates
height = ops.cast(ops.shape(data["image"])[0], "float32")
width = ops.cast(ops.shape(data["image"])[1], "float32")
bounding_box = data["bbox"] * ops.stack([height, width, height, width])
# calculate center and length of longer side, add padding
target_center_y = 0.5 * (bounding_box[0] + bounding_box[2])
target_center_x = 0.5 * (bounding_box[1] + bounding_box[3])
target_size = ops.maximum(
(1.0 + padding) * (bounding_box[2] - bounding_box[0]),
(1.0 + padding) * (bounding_box[3] - bounding_box[1]),
)
# modify crop size to fit into image
target_height = ops.min(
[target_size, 2.0 * target_center_y, 2.0 * (height - target_center_y)]
)
target_width = ops.min(
[target_size, 2.0 * target_center_x, 2.0 * (width - target_center_x)]
)
# crop image, `ops.image.crop_images` only works with non-tensor croppings
image = ops.slice(
data["image"],
start_indices=(
round_to_int(target_center_y - 0.5 * target_height),
round_to_int(target_center_x - 0.5 * target_width),
0,
),
shape=(round_to_int(target_height), round_to_int(target_width), 3),
)
# resize and clip
image = ops.cast(image, "float32")
image = ops.image.resize(image, [image_size, image_size])
return ops.clip(image / 255.0, 0.0, 1.0)
def prepare_dataset(split):
# the validation dataset is shuffled as well, because data order matters
# for the KID calculation
return (
tfds.load(dataset_name, split=split, shuffle_files=True)
.map(preprocess_image, num_parallel_calls=tf.data.AUTOTUNE)
.cache()
.shuffle(10 * batch_size)
.batch(batch_size, drop_remainder=True)
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
train_dataset = prepare_dataset("train")
val_dataset = prepare_dataset("test")
I0000 00:00:1738798971.054632 17795 gpu_device.cc:2022] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 13840 MB memory: -> device: 0, name: Tesla T4, pci bus id: 0000:00:04.0, compute capability: 7.5
预处理后,训练图像如下所示:
内核初始距离 (KID) 被提出作为流行的 Frechet 初始距离 (FID) 指标的替代品,用于衡量图像生成质量。 这两个指标都衡量在 InceptionV3 网络(在 ImageNet 上预训练)的表示空间中,生成分布和训练分布之间的差异。
根据论文,提出 KID 是因为 FID 没有无偏估计量,当在较少的图像上测量时,其期望值较高。 KID 更适合小型数据集,因为其期望值不依赖于测量的样本数量。 以我的经验,它在计算上也更轻便,数值上更稳定,并且更易于实现,因为它可以通过批量方式进行估计。
在此示例中,图像以 Inception 网络的最小可能分辨率(75x75 而不是 299x299)进行评估,并且该指标仅在验证集上进行测量,以提高计算效率。
class KID(keras.metrics.Metric):
def __init__(self, name="kid", **kwargs):
super().__init__(name=name, **kwargs)
# KID is estimated per batch and is averaged across batches
self.kid_tracker = keras.metrics.Mean()
# a pretrained InceptionV3 is used without its classification layer
# transform the pixel values to the 0-255 range, then use the same
# preprocessing as during pretraining
self.encoder = keras.Sequential(
[
layers.InputLayer(input_shape=(image_size, image_size, 3)),
layers.Rescaling(255.0),
layers.Resizing(height=kid_image_size, width=kid_image_size),
layers.Lambda(keras.applications.inception_v3.preprocess_input),
keras.applications.InceptionV3(
include_top=False,
input_shape=(kid_image_size, kid_image_size, 3),
weights="imagenet",
),
layers.GlobalAveragePooling2D(),
],
name="inception_encoder",
)
def polynomial_kernel(self, features_1, features_2):
feature_dimensions = ops.cast(ops.shape(features_1)[1], "float32")
return (
features_1 @ ops.transpose(features_2) / feature_dimensions + 1.0
) ** 3.0
def update_state(self, real_images, generated_images, sample_weight=None):
real_features = self.encoder(real_images, training=False)
generated_features = self.encoder(generated_images, training=False)
# compute polynomial kernels using the two sets of features
kernel_real = self.polynomial_kernel(real_features, real_features)
kernel_generated = self.polynomial_kernel(
generated_features, generated_features
)
kernel_cross = self.polynomial_kernel(real_features, generated_features)
# estimate the squared maximum mean discrepancy using the average kernel values
batch_size = ops.shape(real_features)[0]
batch_size_f = ops.cast(batch_size, "float32")
mean_kernel_real = ops.sum(kernel_real * (1.0 - ops.eye(batch_size))) / (
batch_size_f * (batch_size_f - 1.0)
)
mean_kernel_generated = ops.sum(
kernel_generated * (1.0 - ops.eye(batch_size))
) / (batch_size_f * (batch_size_f - 1.0))
mean_kernel_cross = ops.mean(kernel_cross)
kid = mean_kernel_real + mean_kernel_generated - 2.0 * mean_kernel_cross
# update the average KID estimate
self.kid_tracker.update_state(kid)
def result(self):
return self.kid_tracker.result()
def reset_state(self):
self.kid_tracker.reset_state()
StyleGAN2-ADA 的作者建议在训练期间自适应地更改增强概率。 虽然论文中对其解释不同,但他们使用增强概率的 积分控制,以使判别器在真实图像上的准确率保持接近目标值。 请注意,他们控制的变量实际上是判别器 logits 的平均符号(论文中的 r_t),它对应于 2 * 准确率 - 1。
此方法需要两个超参数
target_accuracy
:判别器在真实图像上的准确率的目标值。 我建议从 80-90% 的范围内选择其值。integration_steps
:将 100% 的准确率误差转换为 100% 的增强概率增加所需的更新步数。 为了给出直观的理解,这定义了增强概率变化的速度。 我建议将其设置为相对较高的值(在本例中为 1000),以便仅缓慢调整增强强度。此过程的主要动机是,目标准确率的最佳值在不同的数据集大小之间是相似的(请参阅论文中的图 4 和图 5),因此无需重新调整,因为该过程会在需要时自动应用更强的数据增强。
# "hard sigmoid", useful for binary accuracy calculation from logits
def step(values):
# negative values -> 0.0, positive values -> 1.0
return 0.5 * (1.0 + ops.sign(values))
# augments images with a probability that is dynamically updated during training
class AdaptiveAugmenter(keras.Model):
def __init__(self):
super().__init__()
# stores the current probability of an image being augmented
self.probability = keras.Variable(0.0)
self.seed_generator = keras.random.SeedGenerator(42)
# the corresponding augmentation names from the paper are shown above each layer
# the authors show (see figure 4), that the blitting and geometric augmentations
# are the most helpful in the low-data regime
self.augmenter = keras.Sequential(
[
layers.InputLayer(input_shape=(image_size, image_size, 3)),
# blitting/x-flip:
layers.RandomFlip("horizontal"),
# blitting/integer translation:
layers.RandomTranslation(
height_factor=max_translation,
width_factor=max_translation,
interpolation="nearest",
),
# geometric/rotation:
layers.RandomRotation(factor=max_rotation),
# geometric/isotropic and anisotropic scaling:
layers.RandomZoom(
height_factor=(-max_zoom, 0.0), width_factor=(-max_zoom, 0.0)
),
],
name="adaptive_augmenter",
)
def call(self, images, training):
if training:
augmented_images = self.augmenter(images, training=training)
# during training either the original or the augmented images are selected
# based on self.probability
augmentation_values = keras.random.uniform(
shape=(batch_size, 1, 1, 1), seed=self.seed_generator
)
augmentation_bools = ops.less(augmentation_values, self.probability)
images = ops.where(augmentation_bools, augmented_images, images)
return images
def update(self, real_logits):
current_accuracy = ops.mean(step(real_logits))
# the augmentation probability is updated based on the discriminator's
# accuracy on real images
accuracy_error = current_accuracy - target_accuracy
self.probability.assign(
ops.clip(self.probability + accuracy_error / integration_steps, 0.0, 1.0)
)
这里我们指定两个网络的架构
GAN 往往对网络架构很敏感,在此示例中,我实现了 DCGAN 架构,因为它在训练期间相对稳定,同时易于实现。 我们在整个网络中使用恒定数量的过滤器,在生成器的最后一层中使用 sigmoid 而不是 tanh,并使用默认初始化而不是随机正态作为进一步的简化。
作为一种良好的实践,我们禁用了批归一化层中的可学习比例参数,因为一方面,后面的 relu + 卷积层使其变得冗余(如 文档 中所述)。 但也因为它应该根据理论在使用 谱归一化(第 4.1 节) 时禁用,此处未使用谱归一化,但在 GAN 中很常见。 我们还禁用了全连接层和卷积层中的偏差,因为后面的批归一化使其变得冗余。
# DCGAN generator
def get_generator():
noise_input = keras.Input(shape=(noise_size,))
x = layers.Dense(4 * 4 * width, use_bias=False)(noise_input)
x = layers.BatchNormalization(scale=False)(x)
x = layers.ReLU()(x)
x = layers.Reshape(target_shape=(4, 4, width))(x)
for _ in range(depth - 1):
x = layers.Conv2DTranspose(
width,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
)(x)
x = layers.BatchNormalization(scale=False)(x)
x = layers.ReLU()(x)
image_output = layers.Conv2DTranspose(
3,
kernel_size=4,
strides=2,
padding="same",
activation="sigmoid",
)(x)
return keras.Model(noise_input, image_output, name="generator")
# DCGAN discriminator
def get_discriminator():
image_input = keras.Input(shape=(image_size, image_size, 3))
x = image_input
for _ in range(depth):
x = layers.Conv2D(
width,
kernel_size=4,
strides=2,
padding="same",
use_bias=False,
)(x)
x = layers.BatchNormalization(scale=False)(x)
x = layers.LeakyReLU(alpha=leaky_relu_slope)(x)
x = layers.Flatten()(x)
x = layers.Dropout(dropout_rate)(x)
output_score = layers.Dense(1)(x)
return keras.Model(image_input, output_score, name="discriminator")
class GAN_ADA(keras.Model):
def __init__(self):
super().__init__()
self.seed_generator = keras.random.SeedGenerator(seed=42)
self.augmenter = AdaptiveAugmenter()
self.generator = get_generator()
self.ema_generator = keras.models.clone_model(self.generator)
self.discriminator = get_discriminator()
self.generator.summary()
self.discriminator.summary()
# we have created all layers at this point, so we can mark the model
# as having been built
self.built = True
def compile(self, generator_optimizer, discriminator_optimizer, **kwargs):
super().compile(**kwargs)
# separate optimizers for the two networks
self.generator_optimizer = generator_optimizer
self.discriminator_optimizer = discriminator_optimizer
self.generator_loss_tracker = keras.metrics.Mean(name="g_loss")
self.discriminator_loss_tracker = keras.metrics.Mean(name="d_loss")
self.real_accuracy = keras.metrics.BinaryAccuracy(name="real_acc")
self.generated_accuracy = keras.metrics.BinaryAccuracy(name="gen_acc")
self.augmentation_probability_tracker = keras.metrics.Mean(name="aug_p")
self.kid = KID()
@property
def metrics(self):
return [
self.generator_loss_tracker,
self.discriminator_loss_tracker,
self.real_accuracy,
self.generated_accuracy,
self.augmentation_probability_tracker,
self.kid,
]
def generate(self, batch_size, training):
latent_samples = keras.random.normal(
shape=(batch_size, noise_size), seed=self.seed_generator
)
# use ema_generator during inference
if training:
generated_images = self.generator(latent_samples, training=training)
else:
generated_images = self.ema_generator(latent_samples, training=training)
return generated_images
def adversarial_loss(self, real_logits, generated_logits):
# this is usually called the non-saturating GAN loss
real_labels = ops.ones(shape=(batch_size, 1))
generated_labels = ops.zeros(shape=(batch_size, 1))
# the generator tries to produce images that the discriminator considers as real
generator_loss = keras.losses.binary_crossentropy(
real_labels, generated_logits, from_logits=True
)
# the discriminator tries to determine if images are real or generated
discriminator_loss = keras.losses.binary_crossentropy(
ops.concatenate([real_labels, generated_labels], axis=0),
ops.concatenate([real_logits, generated_logits], axis=0),
from_logits=True,
)
return ops.mean(generator_loss), ops.mean(discriminator_loss)
def train_step(self, real_images):
real_images = self.augmenter(real_images, training=True)
# use persistent gradient tape because gradients will be calculated twice
with tf.GradientTape(persistent=True) as tape:
generated_images = self.generate(batch_size, training=True)
# gradient is calculated through the image augmentation
generated_images = self.augmenter(generated_images, training=True)
# separate forward passes for the real and generated images, meaning
# that batch normalization is applied separately
real_logits = self.discriminator(real_images, training=True)
generated_logits = self.discriminator(generated_images, training=True)
generator_loss, discriminator_loss = self.adversarial_loss(
real_logits, generated_logits
)
# calculate gradients and update weights
generator_gradients = tape.gradient(
generator_loss, self.generator.trainable_weights
)
discriminator_gradients = tape.gradient(
discriminator_loss, self.discriminator.trainable_weights
)
self.generator_optimizer.apply_gradients(
zip(generator_gradients, self.generator.trainable_weights)
)
self.discriminator_optimizer.apply_gradients(
zip(discriminator_gradients, self.discriminator.trainable_weights)
)
# update the augmentation probability based on the discriminator's performance
self.augmenter.update(real_logits)
self.generator_loss_tracker.update_state(generator_loss)
self.discriminator_loss_tracker.update_state(discriminator_loss)
self.real_accuracy.update_state(1.0, step(real_logits))
self.generated_accuracy.update_state(0.0, step(generated_logits))
self.augmentation_probability_tracker.update_state(self.augmenter.probability)
# track the exponential moving average of the generator's weights to decrease
# variance in the generation quality
for weight, ema_weight in zip(
self.generator.weights, self.ema_generator.weights
):
ema_weight.assign(ema * ema_weight + (1 - ema) * weight)
# KID is not measured during the training phase for computational efficiency
return {m.name: m.result() for m in self.metrics[:-1]}
def test_step(self, real_images):
generated_images = self.generate(batch_size, training=False)
self.kid.update_state(real_images, generated_images)
# only KID is measured during the evaluation phase for computational efficiency
return {self.kid.name: self.kid.result()}
def plot_images(self, epoch=None, logs=None, num_rows=3, num_cols=6, interval=5):
# plot random generated images for visual evaluation of generation quality
if epoch is None or (epoch + 1) % interval == 0:
num_images = num_rows * num_cols
generated_images = self.generate(num_images, training=False)
plt.figure(figsize=(num_cols * 2.0, num_rows * 2.0))
for row in range(num_rows):
for col in range(num_cols):
index = row * num_cols + col
plt.subplot(num_rows, num_cols, index + 1)
plt.imshow(generated_images[index])
plt.axis("off")
plt.tight_layout()
plt.show()
plt.close()
从训练期间的指标可以看出,如果真实准确率(判别器在真实图像上的准确率)低于目标准确率,则增强概率会增加,反之亦然。 以我的经验,在健康的 GAN 训练期间,判别器准确率应保持在 80-95% 的范围内。 低于该范围,判别器太弱,高于该范围,判别器太强。
请注意,我们跟踪生成器权重的指数移动平均值,并将其用于图像生成和 KID 评估。
# create and compile the model
model = GAN_ADA()
model.compile(
generator_optimizer=keras.optimizers.Adam(learning_rate, beta_1),
discriminator_optimizer=keras.optimizers.Adam(learning_rate, beta_1),
)
# save the best model based on the validation KID metric
checkpoint_path = "gan_model.weights.h5"
checkpoint_callback = keras.callbacks.ModelCheckpoint(
filepath=checkpoint_path,
save_weights_only=True,
monitor="val_kid",
mode="min",
save_best_only=True,
)
# run training and plot generated images periodically
model.fit(
train_dataset,
epochs=num_epochs,
validation_data=val_dataset,
callbacks=[
keras.callbacks.LambdaCallback(on_epoch_end=model.plot_images),
checkpoint_callback,
],
)
/usr/local/lib/python3.11/dist-packages/keras/src/layers/core/input_layer.py:27: UserWarning: Argument `input_shape` is deprecated. Use `shape` instead.
warnings.warn(
/usr/local/lib/python3.11/dist-packages/keras/src/layers/activations/leaky_relu.py:41: UserWarning: Argument `alpha` is deprecated. Use `negative_slope` instead.
warnings.warn(
Model: "generator"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ │ input_layer_1 (InputLayer) │ (None, 64) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dense (Dense) │ (None, 2048) │ 131,072 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ batch_normalization │ (None, 2048) │ 6,144 │ │ (BatchNormalization) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ re_lu (ReLU) │ (None, 2048) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ reshape (Reshape) │ (None, 4, 4, 128) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_transpose │ (None, 8, 8, 128) │ 262,144 │ │ (Conv2DTranspose) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ batch_normalization_1 │ (None, 8, 8, 128) │ 384 │ │ (BatchNormalization) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ re_lu_1 (ReLU) │ (None, 8, 8, 128) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_transpose_1 │ (None, 16, 16, 128) │ 262,144 │ │ (Conv2DTranspose) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ batch_normalization_2 │ (None, 16, 16, 128) │ 384 │ │ (BatchNormalization) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ re_lu_2 (ReLU) │ (None, 16, 16, 128) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_transpose_2 │ (None, 32, 32, 128) │ 262,144 │ │ (Conv2DTranspose) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ batch_normalization_3 │ (None, 32, 32, 128) │ 384 │ │ (BatchNormalization) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ re_lu_3 (ReLU) │ (None, 32, 32, 128) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_transpose_3 │ (None, 64, 64, 3) │ 6,147 │ │ (Conv2DTranspose) │ │ │ └─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 930,947 (3.55 MB)
Trainable params: 926,083 (3.53 MB)
Non-trainable params: 4,864 (19.00 KB)
Model: "discriminator"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩ │ input_layer_2 (InputLayer) │ (None, 64, 64, 3) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d (Conv2D) │ (None, 32, 32, 128) │ 6,144 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ batch_normalization_4 │ (None, 32, 32, 128) │ 384 │ │ (BatchNormalization) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ leaky_re_lu (LeakyReLU) │ (None, 32, 32, 128) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_1 (Conv2D) │ (None, 16, 16, 128) │ 262,144 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ batch_normalization_5 │ (None, 16, 16, 128) │ 384 │ │ (BatchNormalization) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ leaky_re_lu_1 (LeakyReLU) │ (None, 16, 16, 128) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_2 (Conv2D) │ (None, 8, 8, 128) │ 262,144 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ batch_normalization_6 │ (None, 8, 8, 128) │ 384 │ │ (BatchNormalization) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ leaky_re_lu_2 (LeakyReLU) │ (None, 8, 8, 128) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ conv2d_3 (Conv2D) │ (None, 4, 4, 128) │ 262,144 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ batch_normalization_7 │ (None, 4, 4, 128) │ 384 │ │ (BatchNormalization) │ │ │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ leaky_re_lu_3 (LeakyReLU) │ (None, 4, 4, 128) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ flatten (Flatten) │ (None, 2048) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dropout (Dropout) │ (None, 2048) │ 0 │ ├─────────────────────────────────┼────────────────────────┼───────────────┤ │ dense_1 (Dense) │ (None, 1) │ 2,049 │ └─────────────────────────────────┴────────────────────────┴───────────────┘
Total params: 796,161 (3.04 MB)
Trainable params: 795,137 (3.03 MB)
Non-trainable params: 1,024 (4.00 KB)
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
0/87910968 [37m━━━━━━━━━━━━━━━━━━━━ 0s 0s/step
4202496/87910968 [37m━━━━━━━━━━━━━━━━━━━━ 1s 0us/step
12304384/87910968 ━━ [37m━━━━━━━━━━━━━━━━━━ 0s 0us/step
21815296/87910968 ━━━━ [37m━━━━━━━━━━━━━━━━ 0s 0us/step
34373632/87910968 ━━━━━━━ [37m━━━━━━━━━━━━━ 0s 0us/step
47669248/87910968 ━━━━━━━━━━ [37m━━━━━━━━━━ 0s 0us/step
62324736/87910968 ━━━━━━━━━━━━━━ [37m━━━━━━ 0s 0us/step
72032256/87910968 ━━━━━━━━━━━━━━━━ [37m━━━━ 0s 0us/step
82083840/87910968 ━━━━━━━━━━━━━━━━━━ [37m━━ 0s 0us/step
87910968/87910968 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step
Epoch 1/10
E0000 00:00:1738798983.901596 17795 meta_optimizer.cc:966] layout failed: INVALID_ARGUMENT: Size of values 0 does not match size of permutation 4 @ fanin shape inStatefulPartitionedCall/gradient_tape/adaptive_augmenter_3/SelectV2_1-1-TransposeNHWCToNCHW-LayoutOptimizer
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1738798987.822990 17861 cuda_solvers.cc:178] Creating GpuSolver handles for stream 0x9f45670
I0000 00:00:1738798988.976919 17862 cuda_dnn.cc:529] Loaded cuDNN version 90300
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 13:22 18s/step - aug_p: 0.0000e+00 - d_loss: 0.8829 - g_loss: 0.5585 - gen_acc: 0.2812 - real_acc: 0.7031
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 7s 173ms/step - aug_p: 0.0000e+00 - d_loss: 0.7985 - g_loss: 0.8154 - gen_acc: 0.4258 - real_acc: 0.6777
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 8s 201ms/step - aug_p: 0.0000e+00 - d_loss: 0.7488 - g_loss: 0.9481 - gen_acc: 0.5052 - real_acc: 0.6680
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 10s 249ms/step - aug_p: 0.0000e+00 - d_loss: 0.7106 - g_loss: 1.0407 - gen_acc: 0.5586 - real_acc: 0.6680
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 11s 269ms/step - aug_p: 0.0000e+00 - d_loss: 0.6782 - g_loss: 1.1104 - gen_acc: 0.5991 - real_acc: 0.6744
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 10s 273ms/step - aug_p: 0.0000e+00 - d_loss: 0.6506 - g_loss: 1.1692 - gen_acc: 0.6301 - real_acc: 0.6818
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 10s 280ms/step - aug_p: 5.1020e-07 - d_loss: 0.6253 - g_loss: 1.2302 - gen_acc: 0.6558 - real_acc: 0.6902
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 10s 289ms/step - aug_p: 1.4962e-06 - d_loss: 0.6030 - g_loss: 1.2838 - gen_acc: 0.6772 - real_acc: 0.6986
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 10s 297ms/step - aug_p: 3.8570e-06 - d_loss: 0.5829 - g_loss: 1.3313 - gen_acc: 0.6952 - real_acc: 0.7074
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 10s 299ms/step - aug_p: 7.9244e-06 - d_loss: 0.5644 - g_loss: 1.3805 - gen_acc: 0.7109 - real_acc: 0.7162
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 11s 314ms/step - aug_p: 1.3531e-05 - d_loss: 0.5473 - g_loss: 1.4301 - gen_acc: 0.7249 - real_acc: 0.7245
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 11s 333ms/step - aug_p: 2.0444e-05 - d_loss: 0.5318 - g_loss: 1.4743 - gen_acc: 0.7373 - real_acc: 0.7322
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 11s 352ms/step - aug_p: 2.8561e-05 - d_loss: 0.5174 - g_loss: 1.5181 - gen_acc: 0.7485 - real_acc: 0.7394
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 11s 365ms/step - aug_p: 3.7929e-05 - d_loss: 0.5040 - g_loss: 1.5586 - gen_acc: 0.7587 - real_acc: 0.7464
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 11s 379ms/step - aug_p: 4.8560e-05 - d_loss: 0.4914 - g_loss: 1.5977 - gen_acc: 0.7680 - real_acc: 0.7530
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 11s 387ms/step - aug_p: 6.0448e-05 - d_loss: 0.4795 - g_loss: 1.6355 - gen_acc: 0.7766 - real_acc: 0.7593
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 11s 399ms/step - aug_p: 7.3577e-05 - d_loss: 0.4683 - g_loss: 1.6715 - gen_acc: 0.7844 - real_acc: 0.7654
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 11s 414ms/step - aug_p: 8.7805e-05 - d_loss: 0.4578 - g_loss: 1.7063 - gen_acc: 0.7917 - real_acc: 0.7711
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 11s 422ms/step - aug_p: 1.0308e-04 - d_loss: 0.4480 - g_loss: 1.7386 - gen_acc: 0.7984 - real_acc: 0.7765
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 11s 433ms/step - aug_p: 1.1933e-04 - d_loss: 0.4386 - g_loss: 1.7736 - gen_acc: 0.8046 - real_acc: 0.7817
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 11s 444ms/step - aug_p: 1.3652e-04 - d_loss: 0.4297 - g_loss: 1.8065 - gen_acc: 0.8104 - real_acc: 0.7866
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 10s 440ms/step - aug_p: 1.5459e-04 - d_loss: 0.4213 - g_loss: 1.8383 - gen_acc: 0.8158 - real_acc: 0.7913
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 9s 434ms/step - aug_p: 1.7347e-04 - d_loss: 0.4132 - g_loss: 1.8694 - gen_acc: 0.8209 - real_acc: 0.7958
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 9s 429ms/step - aug_p: 1.9312e-04 - d_loss: 0.4056 - g_loss: 1.8988 - gen_acc: 0.8257 - real_acc: 0.8000
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 8s 426ms/step - aug_p: 2.1348e-04 - d_loss: 0.3983 - g_loss: 1.9278 - gen_acc: 0.8302 - real_acc: 0.8041
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 8s 423ms/step - aug_p: 2.3451e-04 - d_loss: 0.3914 - g_loss: 1.9548 - gen_acc: 0.8345 - real_acc: 0.8079
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 8s 427ms/step - aug_p: 2.5614e-04 - d_loss: 0.3848 - g_loss: 1.9828 - gen_acc: 0.8385 - real_acc: 0.8116
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 7s 424ms/step - aug_p: 2.7834e-04 - d_loss: 0.3785 - g_loss: 2.0093 - gen_acc: 0.8423 - real_acc: 0.8151
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 7s 420ms/step - aug_p: 3.0107e-04 - d_loss: 0.3724 - g_loss: 2.0347 - gen_acc: 0.8459 - real_acc: 0.8185
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 6s 416ms/step - aug_p: 3.2432e-04 - d_loss: 0.3666 - g_loss: 2.0599 - gen_acc: 0.8493 - real_acc: 0.8218
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 6s 413ms/step - aug_p: 3.4806e-04 - d_loss: 0.3610 - g_loss: 2.0840 - gen_acc: 0.8526 - real_acc: 0.8249
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 5s 409ms/step - aug_p: 3.7225e-04 - d_loss: 0.3556 - g_loss: 2.1073 - gen_acc: 0.8556 - real_acc: 0.8279
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 5s 406ms/step - aug_p: 3.9686e-04 - d_loss: 0.3505 - g_loss: 2.1300 - gen_acc: 0.8586 - real_acc: 0.8307
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 4s 402ms/step - aug_p: 4.2187e-04 - d_loss: 0.3455 - g_loss: 2.1520 - gen_acc: 0.8614 - real_acc: 0.8335
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 4s 400ms/step - aug_p: 4.4725e-04 - d_loss: 0.3407 - g_loss: 2.1736 - gen_acc: 0.8641 - real_acc: 0.8361
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 3s 397ms/step - aug_p: 4.7297e-04 - d_loss: 0.3361 - g_loss: 2.1947 - gen_acc: 0.8667 - real_acc: 0.8387
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 3s 393ms/step - aug_p: 4.9903e-04 - d_loss: 0.3316 - g_loss: 2.2152 - gen_acc: 0.8691 - real_acc: 0.8411
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 3s 387ms/step - aug_p: 5.2539e-04 - d_loss: 0.3273 - g_loss: 2.2357 - gen_acc: 0.8715 - real_acc: 0.8435
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 2s 382ms/step - aug_p: 5.5206e-04 - d_loss: 0.3231 - g_loss: 2.2554 - gen_acc: 0.8738 - real_acc: 0.8458
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 2s 376ms/step - aug_p: 5.7902e-04 - d_loss: 0.3191 - g_loss: 2.2756 - gen_acc: 0.8759 - real_acc: 0.8480
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1s 371ms/step - aug_p: 6.0626e-04 - d_loss: 0.3151 - g_loss: 2.2954 - gen_acc: 0.8780 - real_acc: 0.8502
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 1s 366ms/step - aug_p: 6.3377e-04 - d_loss: 0.3113 - g_loss: 2.3147 - gen_acc: 0.8800 - real_acc: 0.8522
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 1s 362ms/step - aug_p: 6.6154e-04 - d_loss: 0.3076 - g_loss: 2.3339 - gen_acc: 0.8820 - real_acc: 0.8543
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0s 358ms/step - aug_p: 6.8956e-04 - d_loss: 0.3041 - g_loss: 2.3524 - gen_acc: 0.8839 - real_acc: 0.8562
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0s 354ms/step - aug_p: 7.1780e-04 - d_loss: 0.3006 - g_loss: 2.3703 - gen_acc: 0.8857 - real_acc: 0.8581
46/46 ━━━━━━━━━━━━━━━━━━━━ 0s 350ms/step - aug_p: 7.4625e-04 - d_loss: 0.2973 - g_loss: 2.3871 - gen_acc: 0.8874 - real_acc: 0.8599
46/46 ━━━━━━━━━━━━━━━━━━━━ 61s 958ms/step - aug_p: 7.7349e-04 - d_loss: 0.2942 - g_loss: 2.4032 - gen_acc: 0.8890 - real_acc: 0.8616 - val_kid: 9.1841
Epoch 2/10
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 22:28 30s/step - aug_p: 0.0051 - d_loss: 0.1030 - g_loss: 8.8928 - gen_acc: 1.0000 - real_acc: 0.9375
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 7s 176ms/step - aug_p: 0.0051 - d_loss: 0.1073 - g_loss: 8.4938 - gen_acc: 0.9980 - real_acc: 0.9297
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7s 176ms/step - aug_p: 0.0051 - d_loss: 0.1074 - g_loss: 7.7540 - gen_acc: 0.9952 - real_acc: 0.9340
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7s 176ms/step - aug_p: 0.0052 - d_loss: 0.1037 - g_loss: 7.2815 - gen_acc: 0.9945 - real_acc: 0.9388
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7s 175ms/step - aug_p: 0.0052 - d_loss: 0.0997 - g_loss: 6.9305 - gen_acc: 0.9943 - real_acc: 0.9432
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7s 175ms/step - aug_p: 0.0052 - d_loss: 0.0960 - g_loss: 6.6418 - gen_acc: 0.9942 - real_acc: 0.9473
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6s 175ms/step - aug_p: 0.0052 - d_loss: 0.0933 - g_loss: 6.4224 - gen_acc: 0.9939 - real_acc: 0.9503
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6s 175ms/step - aug_p: 0.0053 - d_loss: 0.0907 - g_loss: 6.2473 - gen_acc: 0.9937 - real_acc: 0.9530
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6s 175ms/step - aug_p: 0.0053 - d_loss: 0.0885 - g_loss: 6.0970 - gen_acc: 0.9936 - real_acc: 0.9552
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6s 175ms/step - aug_p: 0.0053 - d_loss: 0.0868 - g_loss: 5.9686 - gen_acc: 0.9936 - real_acc: 0.9571
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6s 175ms/step - aug_p: 0.0054 - d_loss: 0.0852 - g_loss: 5.8546 - gen_acc: 0.9936 - real_acc: 0.9588
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 5s 176ms/step - aug_p: 0.0054 - d_loss: 0.0837 - g_loss: 5.7615 - gen_acc: 0.9937 - real_acc: 0.9602
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 5s 175ms/step - aug_p: 0.0054 - d_loss: 0.0825 - g_loss: 5.6750 - gen_acc: 0.9937 - real_acc: 0.9614
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5s 176ms/step - aug_p: 0.0055 - d_loss: 0.0813 - g_loss: 5.5972 - gen_acc: 0.9937 - real_acc: 0.9626
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5s 176ms/step - aug_p: 0.0055 - d_loss: 0.0802 - g_loss: 5.5273 - gen_acc: 0.9938 - real_acc: 0.9636
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5s 176ms/step - aug_p: 0.0055 - d_loss: 0.0792 - g_loss: 5.4619 - gen_acc: 0.9939 - real_acc: 0.9645
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5s 176ms/step - aug_p: 0.0056 - d_loss: 0.0783 - g_loss: 5.4012 - gen_acc: 0.9940 - real_acc: 0.9654
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 4s 176ms/step - aug_p: 0.0056 - d_loss: 0.0775 - g_loss: 5.3477 - gen_acc: 0.9941 - real_acc: 0.9661
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4s 176ms/step - aug_p: 0.0056 - d_loss: 0.0768 - g_loss: 5.2979 - gen_acc: 0.9941 - real_acc: 0.9667
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4s 176ms/step - aug_p: 0.0057 - d_loss: 0.0762 - g_loss: 5.2495 - gen_acc: 0.9941 - real_acc: 0.9673
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4s 176ms/step - aug_p: 0.0057 - d_loss: 0.0758 - g_loss: 5.2113 - gen_acc: 0.9940 - real_acc: 0.9677
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4s 176ms/step - aug_p: 0.0057 - d_loss: 0.0754 - g_loss: 5.1753 - gen_acc: 0.9940 - real_acc: 0.9681
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4s 176ms/step - aug_p: 0.0058 - d_loss: 0.0752 - g_loss: 5.1387 - gen_acc: 0.9940 - real_acc: 0.9684
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3s 176ms/step - aug_p: 0.0058 - d_loss: 0.0749 - g_loss: 5.1112 - gen_acc: 0.9939 - real_acc: 0.9688
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3s 176ms/step - aug_p: 0.0058 - d_loss: 0.0746 - g_loss: 5.0899 - gen_acc: 0.9939 - real_acc: 0.9691
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3s 177ms/step - aug_p: 0.0059 - d_loss: 0.0744 - g_loss: 5.0691 - gen_acc: 0.9939 - real_acc: 0.9693
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3s 177ms/step - aug_p: 0.0059 - d_loss: 0.0743 - g_loss: 5.0465 - gen_acc: 0.9937 - real_acc: 0.9696
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3s 177ms/step - aug_p: 0.0059 - d_loss: 0.0742 - g_loss: 5.0296 - gen_acc: 0.9935 - real_acc: 0.9698
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3s 177ms/step - aug_p: 0.0060 - d_loss: 0.0741 - g_loss: 5.0163 - gen_acc: 0.9934 - real_acc: 0.9701
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2s 177ms/step - aug_p: 0.0060 - d_loss: 0.0740 - g_loss: 5.0018 - gen_acc: 0.9932 - real_acc: 0.9703
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2s 177ms/step - aug_p: 0.0060 - d_loss: 0.0739 - g_loss: 4.9862 - gen_acc: 0.9931 - real_acc: 0.9705
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2s 177ms/step - aug_p: 0.0061 - d_loss: 0.0739 - g_loss: 4.9725 - gen_acc: 0.9929 - real_acc: 0.9707
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2s 177ms/step - aug_p: 0.0061 - d_loss: 0.0739 - g_loss: 4.9583 - gen_acc: 0.9928 - real_acc: 0.9709
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2s 178ms/step - aug_p: 0.0061 - d_loss: 0.0739 - g_loss: 4.9439 - gen_acc: 0.9927 - real_acc: 0.9711
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1s 178ms/step - aug_p: 0.0062 - d_loss: 0.0739 - g_loss: 4.9297 - gen_acc: 0.9926 - real_acc: 0.9712
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1s 178ms/step - aug_p: 0.0062 - d_loss: 0.0740 - g_loss: 4.9151 - gen_acc: 0.9925 - real_acc: 0.9714
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1s 178ms/step - aug_p: 0.0062 - d_loss: 0.0741 - g_loss: 4.9027 - gen_acc: 0.9924 - real_acc: 0.9714
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1s 178ms/step - aug_p: 0.0063 - d_loss: 0.0743 - g_loss: 4.8890 - gen_acc: 0.9921 - real_acc: 0.9715
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1s 178ms/step - aug_p: 0.0063 - d_loss: 0.0748 - g_loss: 4.8802 - gen_acc: 0.9918 - real_acc: 0.9713
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1s 178ms/step - aug_p: 0.0063 - d_loss: 0.0752 - g_loss: 4.8742 - gen_acc: 0.9916 - real_acc: 0.9712
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 0s 178ms/step - aug_p: 0.0064 - d_loss: 0.0756 - g_loss: 4.8685 - gen_acc: 0.9914 - real_acc: 0.9710
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0s 178ms/step - aug_p: 0.0064 - d_loss: 0.0759 - g_loss: 4.8620 - gen_acc: 0.9911 - real_acc: 0.9709
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0s 178ms/step - aug_p: 0.0064 - d_loss: 0.0762 - g_loss: 4.8555 - gen_acc: 0.9909 - real_acc: 0.9708
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0s 178ms/step - aug_p: 0.0064 - d_loss: 0.0765 - g_loss: 4.8492 - gen_acc: 0.9907 - real_acc: 0.9707
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0s 178ms/step - aug_p: 0.0065 - d_loss: 0.0768 - g_loss: 4.8424 - gen_acc: 0.9905 - real_acc: 0.9707
46/46 ━━━━━━━━━━━━━━━━━━━━ 0s 178ms/step - aug_p: 0.0065 - d_loss: 0.0771 - g_loss: 4.8357 - gen_acc: 0.9902 - real_acc: 0.9706
46/46 ━━━━━━━━━━━━━━━━━━━━ 43s 280ms/step - aug_p: 0.0065 - d_loss: 0.0774 - g_loss: 4.8293 - gen_acc: 0.9900 - real_acc: 0.9705 - val_kid: 8.8293
Epoch 3/10
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 5:54 8s/step - aug_p: 0.0105 - d_loss: 0.0941 - g_loss: 3.4148 - gen_acc: 0.9766 - real_acc: 0.9609
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 8s 196ms/step - aug_p: 0.0105 - d_loss: 0.0925 - g_loss: 3.3668 - gen_acc: 0.9805 - real_acc: 0.9668
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 8s 187ms/step - aug_p: 0.0106 - d_loss: 0.0918 - g_loss: 3.3820 - gen_acc: 0.9835 - real_acc: 0.9666
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7s 183ms/step - aug_p: 0.0106 - d_loss: 0.0932 - g_loss: 3.3732 - gen_acc: 0.9847 - real_acc: 0.9661
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7s 182ms/step - aug_p: 0.0106 - d_loss: 0.0941 - g_loss: 3.3531 - gen_acc: 0.9859 - real_acc: 0.9670
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7s 181ms/step - aug_p: 0.0107 - d_loss: 0.0942 - g_loss: 3.3519 - gen_acc: 0.9869 - real_acc: 0.9679
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 7s 180ms/step - aug_p: 0.0107 - d_loss: 0.0941 - g_loss: 3.3467 - gen_acc: 0.9877 - real_acc: 0.9690
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6s 179ms/step - aug_p: 0.0107 - d_loss: 0.0944 - g_loss: 3.3438 - gen_acc: 0.9882 - real_acc: 0.9693
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6s 179ms/step - aug_p: 0.0107 - d_loss: 0.0947 - g_loss: 3.3384 - gen_acc: 0.9886 - real_acc: 0.9696
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6s 180ms/step - aug_p: 0.0108 - d_loss: 0.0948 - g_loss: 3.3468 - gen_acc: 0.9889 - real_acc: 0.9694
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6s 180ms/step - aug_p: 0.0108 - d_loss: 0.0952 - g_loss: 3.3443 - gen_acc: 0.9888 - real_acc: 0.9695
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6s 180ms/step - aug_p: 0.0108 - d_loss: 0.0955 - g_loss: 3.3676 - gen_acc: 0.9887 - real_acc: 0.9693
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 5s 180ms/step - aug_p: 0.0109 - d_loss: 0.0954 - g_loss: 3.3959 - gen_acc: 0.9888 - real_acc: 0.9693
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5s 180ms/step - aug_p: 0.0109 - d_loss: 0.0957 - g_loss: 3.4125 - gen_acc: 0.9883 - real_acc: 0.9694
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5s 180ms/step - aug_p: 0.0109 - d_loss: 0.0963 - g_loss: 3.4419 - gen_acc: 0.9880 - real_acc: 0.9688
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5s 180ms/step - aug_p: 0.0110 - d_loss: 0.0969 - g_loss: 3.4641 - gen_acc: 0.9876 - real_acc: 0.9684
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5s 180ms/step - aug_p: 0.0110 - d_loss: 0.0972 - g_loss: 3.4867 - gen_acc: 0.9873 - real_acc: 0.9681
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5s 180ms/step - aug_p: 0.0110 - d_loss: 0.0975 - g_loss: 3.5046 - gen_acc: 0.9869 - real_acc: 0.9679
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4s 180ms/step - aug_p: 0.0110 - d_loss: 0.0977 - g_loss: 3.5235 - gen_acc: 0.9866 - real_acc: 0.9678
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4s 180ms/step - aug_p: 0.0111 - d_loss: 0.0978 - g_loss: 3.5387 - gen_acc: 0.9863 - real_acc: 0.9677
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4s 180ms/step - aug_p: 0.0111 - d_loss: 0.0980 - g_loss: 3.5544 - gen_acc: 0.9861 - real_acc: 0.9676
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4s 179ms/step - aug_p: 0.0111 - d_loss: 0.0983 - g_loss: 3.5646 - gen_acc: 0.9857 - real_acc: 0.9675
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4s 179ms/step - aug_p: 0.0112 - d_loss: 0.0990 - g_loss: 3.5834 - gen_acc: 0.9853 - real_acc: 0.9670
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3s 179ms/step - aug_p: 0.0112 - d_loss: 0.0995 - g_loss: 3.6027 - gen_acc: 0.9850 - real_acc: 0.9665
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3s 179ms/step - aug_p: 0.0112 - d_loss: 0.1001 - g_loss: 3.6171 - gen_acc: 0.9845 - real_acc: 0.9662
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3s 179ms/step - aug_p: 0.0112 - d_loss: 0.1006 - g_loss: 3.6374 - gen_acc: 0.9840 - real_acc: 0.9659
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3s 179ms/step - aug_p: 0.0113 - d_loss: 0.1009 - g_loss: 3.6630 - gen_acc: 0.9836 - real_acc: 0.9656
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3s 179ms/step - aug_p: 0.0113 - d_loss: 0.1012 - g_loss: 3.6907 - gen_acc: 0.9833 - real_acc: 0.9654
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3s 179ms/step - aug_p: 0.0113 - d_loss: 0.1014 - g_loss: 3.7165 - gen_acc: 0.9830 - real_acc: 0.9652
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2s 179ms/step - aug_p: 0.0114 - d_loss: 0.1016 - g_loss: 3.7387 - gen_acc: 0.9827 - real_acc: 0.9651
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2s 179ms/step - aug_p: 0.0114 - d_loss: 0.1016 - g_loss: 3.7601 - gen_acc: 0.9824 - real_acc: 0.9650
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2s 179ms/step - aug_p: 0.0114 - d_loss: 0.1017 - g_loss: 3.7799 - gen_acc: 0.9822 - real_acc: 0.9649
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2s 179ms/step - aug_p: 0.0114 - d_loss: 0.1017 - g_loss: 3.7963 - gen_acc: 0.9820 - real_acc: 0.9649
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2s 179ms/step - aug_p: 0.0115 - d_loss: 0.1019 - g_loss: 3.8154 - gen_acc: 0.9818 - real_acc: 0.9647
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1s 179ms/step - aug_p: 0.0115 - d_loss: 0.1020 - g_loss: 3.8348 - gen_acc: 0.9816 - real_acc: 0.9645
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1s 179ms/step - aug_p: 0.0115 - d_loss: 0.1022 - g_loss: 3.8515 - gen_acc: 0.9813 - real_acc: 0.9644
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1s 179ms/step - aug_p: 0.0115 - d_loss: 0.1025 - g_loss: 3.8702 - gen_acc: 0.9810 - real_acc: 0.9642
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1s 179ms/step - aug_p: 0.0116 - d_loss: 0.1027 - g_loss: 3.8891 - gen_acc: 0.9807 - real_acc: 0.9640
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1s 179ms/step - aug_p: 0.0116 - d_loss: 0.1032 - g_loss: 3.9048 - gen_acc: 0.9803 - real_acc: 0.9638
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1s 179ms/step - aug_p: 0.0116 - d_loss: 0.1036 - g_loss: 3.9227 - gen_acc: 0.9799 - real_acc: 0.9636
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 0s 179ms/step - aug_p: 0.0117 - d_loss: 0.1040 - g_loss: 3.9415 - gen_acc: 0.9796 - real_acc: 0.9633
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0s 179ms/step - aug_p: 0.0117 - d_loss: 0.1044 - g_loss: 3.9588 - gen_acc: 0.9792 - real_acc: 0.9631
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0s 179ms/step - aug_p: 0.0117 - d_loss: 0.1048 - g_loss: 3.9748 - gen_acc: 0.9789 - real_acc: 0.9629
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0s 179ms/step - aug_p: 0.0117 - d_loss: 0.1052 - g_loss: 3.9895 - gen_acc: 0.9785 - real_acc: 0.9627
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0s 179ms/step - aug_p: 0.0118 - d_loss: 0.1055 - g_loss: 4.0041 - gen_acc: 0.9782 - real_acc: 0.9626
46/46 ━━━━━━━━━━━━━━━━━━━━ 0s 179ms/step - aug_p: 0.0118 - d_loss: 0.1058 - g_loss: 4.0177 - gen_acc: 0.9779 - real_acc: 0.9624
46/46 ━━━━━━━━━━━━━━━━━━━━ 22s 315ms/step - aug_p: 0.0118 - d_loss: 0.1061 - g_loss: 4.0306 - gen_acc: 0.9776 - real_acc: 0.9623 - val_kid: 8.4585
Epoch 4/10
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 11s 263ms/step - aug_p: 0.0154 - d_loss: 0.1223 - g_loss: 2.5203 - gen_acc: 0.9688 - real_acc: 1.0000
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 7s 180ms/step - aug_p: 0.0154 - d_loss: 0.1018 - g_loss: 3.6445 - gen_acc: 0.9766 - real_acc: 0.9980
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0155 - d_loss: 0.0925 - g_loss: 4.2071 - gen_acc: 0.9809 - real_acc: 0.9926
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0155 - d_loss: 0.0875 - g_loss: 4.3535 - gen_acc: 0.9827 - real_acc: 0.9910
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0155 - d_loss: 0.0850 - g_loss: 4.3580 - gen_acc: 0.9843 - real_acc: 0.9900
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0156 - d_loss: 0.0830 - g_loss: 4.3789 - gen_acc: 0.9856 - real_acc: 0.9889
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0156 - d_loss: 0.0821 - g_loss: 4.3592 - gen_acc: 0.9864 - real_acc: 0.9879
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0156 - d_loss: 0.0814 - g_loss: 4.3377 - gen_acc: 0.9871 - real_acc: 0.9870
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0156 - d_loss: 0.0811 - g_loss: 4.3049 - gen_acc: 0.9876 - real_acc: 0.9864
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0157 - d_loss: 0.0807 - g_loss: 4.2813 - gen_acc: 0.9881 - real_acc: 0.9859
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0157 - d_loss: 0.0804 - g_loss: 4.2560 - gen_acc: 0.9884 - real_acc: 0.9855
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0157 - d_loss: 0.0804 - g_loss: 4.2284 - gen_acc: 0.9886 - real_acc: 0.9851
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0158 - d_loss: 0.0806 - g_loss: 4.2117 - gen_acc: 0.9888 - real_acc: 0.9847
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0158 - d_loss: 0.0807 - g_loss: 4.1925 - gen_acc: 0.9887 - real_acc: 0.9844
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0158 - d_loss: 0.0807 - g_loss: 4.1790 - gen_acc: 0.9888 - real_acc: 0.9841
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0159 - d_loss: 0.0807 - g_loss: 4.1631 - gen_acc: 0.9887 - real_acc: 0.9840
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0159 - d_loss: 0.0807 - g_loss: 4.1518 - gen_acc: 0.9887 - real_acc: 0.9838
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0159 - d_loss: 0.0807 - g_loss: 4.1398 - gen_acc: 0.9887 - real_acc: 0.9837
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0160 - d_loss: 0.0809 - g_loss: 4.1255 - gen_acc: 0.9887 - real_acc: 0.9837
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0160 - d_loss: 0.0810 - g_loss: 4.1171 - gen_acc: 0.9887 - real_acc: 0.9835
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0160 - d_loss: 0.0810 - g_loss: 4.1116 - gen_acc: 0.9886 - real_acc: 0.9835
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0161 - d_loss: 0.0811 - g_loss: 4.1037 - gen_acc: 0.9885 - real_acc: 0.9834
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0161 - d_loss: 0.0812 - g_loss: 4.1013 - gen_acc: 0.9885 - real_acc: 0.9833
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0161 - d_loss: 0.0813 - g_loss: 4.1000 - gen_acc: 0.9884 - real_acc: 0.9832
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0162 - d_loss: 0.0814 - g_loss: 4.0967 - gen_acc: 0.9883 - real_acc: 0.9832
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0162 - d_loss: 0.0815 - g_loss: 4.0951 - gen_acc: 0.9882 - real_acc: 0.9831
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0162 - d_loss: 0.0815 - g_loss: 4.0930 - gen_acc: 0.9882 - real_acc: 0.9830
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0163 - d_loss: 0.0817 - g_loss: 4.0887 - gen_acc: 0.9880 - real_acc: 0.9830
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0163 - d_loss: 0.0818 - g_loss: 4.0890 - gen_acc: 0.9879 - real_acc: 0.9829
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0163 - d_loss: 0.0819 - g_loss: 4.0918 - gen_acc: 0.9878 - real_acc: 0.9828
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0164 - d_loss: 0.0821 - g_loss: 4.0923 - gen_acc: 0.9877 - real_acc: 0.9826
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0164 - d_loss: 0.0823 - g_loss: 4.0957 - gen_acc: 0.9876 - real_acc: 0.9826
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0164 - d_loss: 0.0824 - g_loss: 4.1014 - gen_acc: 0.9874 - real_acc: 0.9825
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0165 - d_loss: 0.0824 - g_loss: 4.1072 - gen_acc: 0.9873 - real_acc: 0.9824
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 180毫秒/步 - aug_p: 0.0165 - d_loss: 0.0825 - g_loss: 4.1116 - gen_acc: 0.9872 - real_acc: 0.9823
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 180毫秒/步 - aug_p: 0.0165 - d_loss: 0.0826 - g_loss: 4.1168 - gen_acc: 0.9871 - real_acc: 0.9822
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 181毫秒/步 - aug_p: 0.0166 - d_loss: 0.0827 - g_loss: 4.1217 - gen_acc: 0.9870 - real_acc: 0.9822
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0166 - d_loss: 0.0827 - g_loss: 4.1262 - gen_acc: 0.9869 - real_acc: 0.9821
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0166 - d_loss: 0.0828 - g_loss: 4.1298 - gen_acc: 0.9868 - real_acc: 0.9820
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1秒 180毫秒/步 - aug_p: 0.0167 - d_loss: 0.0828 - g_loss: 4.1333 - gen_acc: 0.9868 - real_acc: 0.9820
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 0秒 181毫秒/步 - aug_p: 0.0167 - d_loss: 0.0828 - g_loss: 4.1361 - gen_acc: 0.9867 - real_acc: 0.9819
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 181毫秒/步 - aug_p: 0.0167 - d_loss: 0.0828 - g_loss: 4.1389 - gen_acc: 0.9866 - real_acc: 0.9819
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 181毫秒/步 - aug_p: 0.0168 - d_loss: 0.0828 - g_loss: 4.1408 - gen_acc: 0.9866 - real_acc: 0.9819
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 181毫秒/步 - aug_p: 0.0168 - d_loss: 0.0828 - g_loss: 4.1438 - gen_acc: 0.9865 - real_acc: 0.9818
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 181毫秒/步 - aug_p: 0.0168 - d_loss: 0.0828 - g_loss: 4.1466 - gen_acc: 0.9865 - real_acc: 0.9818
46/46 ━━━━━━━━━━━━━━━━━━━━ 0秒 181毫秒/步 - aug_p: 0.0168 - d_loss: 0.0829 - g_loss: 4.1480 - gen_acc: 0.9864 - real_acc: 0.9818
46/46 ━━━━━━━━━━━━━━━━━━━━ 14秒 316毫秒/步 - aug_p: 0.0169 - d_loss: 0.0829 - g_loss: 4.1493 - gen_acc: 0.9863 - real_acc: 0.9817 - val_kid: 6.6764
Epoch 5/10
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 10秒 237毫秒/步 - aug_p: 0.0212 - d_loss: 0.3046 - g_loss: 11.2403 - gen_acc: 1.0000 - real_acc: 0.7734
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 8秒 197毫秒/步 - aug_p: 0.0212 - d_loss: 0.2549 - g_loss: 10.8464 - gen_acc: 1.0000 - real_acc: 0.8086
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 8秒 190毫秒/步 - aug_p: 0.0212 - d_loss: 0.2217 - g_loss: 10.0394 - gen_acc: 0.9983 - real_acc: 0.8359
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 187毫秒/步 - aug_p: 0.0212 - d_loss: 0.2183 - g_loss: 9.2019 - gen_acc: 0.9753 - real_acc: 0.8560
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 185毫秒/步 - aug_p: 0.0212 - d_loss: 0.2125 - g_loss: 8.8056 - gen_acc: 0.9652 - real_acc: 0.8676
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 185毫秒/步 - aug_p: 0.0213 - d_loss: 0.2060 - g_loss: 8.5755 - gen_acc: 0.9606 - real_acc: 0.8755
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 7秒 184毫秒/步 - aug_p: 0.0213 - d_loss: 0.1995 - g_loss: 8.3695 - gen_acc: 0.9579 - real_acc: 0.8823
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 7秒 184毫秒/步 - aug_p: 0.0213 - d_loss: 0.1938 - g_loss: 8.1574 - gen_acc: 0.9561 - real_acc: 0.8884
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 184毫秒/步 - aug_p: 0.0214 - d_loss: 0.1881 - g_loss: 7.9590 - gen_acc: 0.9552 - real_acc: 0.8939
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 184毫秒/步 - aug_p: 0.0214 - d_loss: 0.1827 - g_loss: 7.7719 - gen_acc: 0.9550 - real_acc: 0.8989
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 183毫秒/步 - aug_p: 0.0214 - d_loss: 0.1785 - g_loss: 7.5867 - gen_acc: 0.9546 - real_acc: 0.9034
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6秒 183毫秒/步 - aug_p: 0.0214 - d_loss: 0.1748 - g_loss: 7.4330 - gen_acc: 0.9546 - real_acc: 0.9072
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6秒 183毫秒/步 - aug_p: 0.0215 - d_loss: 0.1717 - g_loss: 7.2895 - gen_acc: 0.9548 - real_acc: 0.9103
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 183毫秒/步 - aug_p: 0.0215 - d_loss: 0.1693 - g_loss: 7.1489 - gen_acc: 0.9544 - real_acc: 0.9132
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 182毫秒/步 - aug_p: 0.0215 - d_loss: 0.1674 - g_loss: 7.0344 - gen_acc: 0.9543 - real_acc: 0.9153
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 182毫秒/步 - aug_p: 0.0215 - d_loss: 0.1654 - g_loss: 6.9321 - gen_acc: 0.9544 - real_acc: 0.9173
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 182毫秒/步 - aug_p: 0.0216 - d_loss: 0.1637 - g_loss: 6.8304 - gen_acc: 0.9541 - real_acc: 0.9191
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 183毫秒/步 - aug_p: 0.0216 - d_loss: 0.1620 - g_loss: 6.7449 - gen_acc: 0.9540 - real_acc: 0.9209
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 183毫秒/步 - aug_p: 0.0216 - d_loss: 0.1603 - g_loss: 6.6702 - gen_acc: 0.9540 - real_acc: 0.9225
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 182毫秒/步 - aug_p: 0.0217 - d_loss: 0.1587 - g_loss: 6.5977 - gen_acc: 0.9541 - real_acc: 0.9240
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 182毫秒/步 - aug_p: 0.0217 - d_loss: 0.1572 - g_loss: 6.5271 - gen_acc: 0.9542 - real_acc: 0.9255
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 182毫秒/步 - aug_p: 0.0217 - d_loss: 0.1556 - g_loss: 6.4626 - gen_acc: 0.9544 - real_acc: 0.9269
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4秒 182毫秒/步 - aug_p: 0.0217 - d_loss: 0.1540 - g_loss: 6.4028 - gen_acc: 0.9546 - real_acc: 0.9282
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4秒 182毫秒/步 - aug_p: 0.0218 - d_loss: 0.1525 - g_loss: 6.3440 - gen_acc: 0.9548 - real_acc: 0.9295
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 183毫秒/步 - aug_p: 0.0218 - d_loss: 0.1510 - g_loss: 6.2898 - gen_acc: 0.9551 - real_acc: 0.9307
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 183毫秒/步 - aug_p: 0.0218 - d_loss: 0.1495 - g_loss: 6.2380 - gen_acc: 0.9554 - real_acc: 0.9318
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 183毫秒/步 - aug_p: 0.0219 - d_loss: 0.1481 - g_loss: 6.1880 - gen_acc: 0.9558 - real_acc: 0.9330
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 182毫秒/步 - aug_p: 0.0219 - d_loss: 0.1468 - g_loss: 6.1413 - gen_acc: 0.9561 - real_acc: 0.9340
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 183毫秒/步 - aug_p: 0.0219 - d_loss: 0.1454 - g_loss: 6.0966 - gen_acc: 0.9565 - real_acc: 0.9350
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 182毫秒/步 - aug_p: 0.0220 - d_loss: 0.1441 - g_loss: 6.0534 - gen_acc: 0.9569 - real_acc: 0.9360
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 183毫秒/步 - aug_p: 0.0220 - d_loss: 0.1428 - g_loss: 6.0122 - gen_acc: 0.9573 - real_acc: 0.9370
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 182毫秒/步 - aug_p: 0.0220 - d_loss: 0.1415 - g_loss: 5.9738 - gen_acc: 0.9577 - real_acc: 0.9379
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 182毫秒/步 - aug_p: 0.0220 - d_loss: 0.1403 - g_loss: 5.9369 - gen_acc: 0.9581 - real_acc: 0.9388
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 182毫秒/步 - aug_p: 0.0221 - d_loss: 0.1390 - g_loss: 5.9020 - gen_acc: 0.9585 - real_acc: 0.9396
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 2秒 182毫秒/步 - aug_p: 0.0221 - d_loss: 0.1378 - g_loss: 5.8680 - gen_acc: 0.9589 - real_acc: 0.9404
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 182毫秒/步 - aug_p: 0.0221 - d_loss: 0.1366 - g_loss: 5.8355 - gen_acc: 0.9592 - real_acc: 0.9412
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 182毫秒/步 - aug_p: 0.0222 - d_loss: 0.1355 - g_loss: 5.8042 - gen_acc: 0.9596 - real_acc: 0.9420
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 182毫秒/步 - aug_p: 0.0222 - d_loss: 0.1344 - g_loss: 5.7737 - gen_acc: 0.9600 - real_acc: 0.9427
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 182毫秒/步 - aug_p: 0.0222 - d_loss: 0.1333 - g_loss: 5.7447 - gen_acc: 0.9604 - real_acc: 0.9434
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1秒 182毫秒/步 - aug_p: 0.0223 - d_loss: 0.1323 - g_loss: 5.7161 - gen_acc: 0.9608 - real_acc: 0.9441
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 0秒 182毫秒/步 - aug_p: 0.0223 - d_loss: 0.1313 - g_loss: 5.6892 - gen_acc: 0.9611 - real_acc: 0.9447
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 182毫秒/步 - aug_p: 0.0223 - d_loss: 0.1304 - g_loss: 5.6621 - gen_acc: 0.9615 - real_acc: 0.9453
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 182毫秒/步 - aug_p: 0.0223 - d_loss: 0.1296 - g_loss: 5.6390 - gen_acc: 0.9618 - real_acc: 0.9458
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 182毫秒/步 - aug_p: 0.0224 - d_loss: 0.1288 - g_loss: 5.6185 - gen_acc: 0.9621 - real_acc: 0.9463
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 182毫秒/步 - aug_p: 0.0224 - d_loss: 0.1280 - g_loss: 5.5982 - gen_acc: 0.9623 - real_acc: 0.9468
46/46 ━━━━━━━━━━━━━━━━━━━━ 0秒 182毫秒/步 - aug_p: 0.0224 - d_loss: 0.1273 - g_loss: 5.5795 - gen_acc: 0.9626 - real_acc: 0.9473
46/46 ━━━━━━━━━━━━━━━━━━━━ 14秒 317毫秒/步 - aug_p: 0.0225 - d_loss: 0.1265 - g_loss: 5.5616 - gen_acc: 0.9629 - real_acc: 0.9478 - val_kid: 4.7496
Epoch 6/10
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 10秒 236毫秒/步 - aug_p: 0.0268 - d_loss: 0.0745 - g_loss: 5.1780 - gen_acc: 0.9922 - real_acc: 0.9688
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 8秒 184毫秒/步 - aug_p: 0.0269 - d_loss: 0.0774 - g_loss: 4.5412 - gen_acc: 0.9883 - real_acc: 0.9766
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 183毫秒/步 - aug_p: 0.0269 - d_loss: 0.0743 - g_loss: 4.5406 - gen_acc: 0.9887 - real_acc: 0.9783
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 184毫秒/步 - aug_p: 0.0269 - d_loss: 0.0724 - g_loss: 4.5764 - gen_acc: 0.9896 - real_acc: 0.9779
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 183毫秒/步 - aug_p: 0.0270 - d_loss: 0.0732 - g_loss: 4.5209 - gen_acc: 0.9882 - real_acc: 0.9785
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 182毫秒/步 - aug_p: 0.0270 - d_loss: 0.0738 - g_loss: 4.5449 - gen_acc: 0.9878 - real_acc: 0.9782
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 7秒 182毫秒/步 - aug_p: 0.0270 - d_loss: 0.0747 - g_loss: 4.5880 - gen_acc: 0.9878 - real_acc: 0.9769
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0271 - d_loss: 0.0766 - g_loss: 4.5791 - gen_acc: 0.9857 - real_acc: 0.9763
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 183毫秒/步 - aug_p: 0.0271 - d_loss: 0.0777 - g_loss: 4.6269 - gen_acc: 0.9844 - real_acc: 0.9757
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0271 - d_loss: 0.0786 - g_loss: 4.7075 - gen_acc: 0.9836 - real_acc: 0.9749
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0271 - d_loss: 0.0792 - g_loss: 4.7786 - gen_acc: 0.9826 - real_acc: 0.9745
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0272 - d_loss: 0.0793 - g_loss: 4.8440 - gen_acc: 0.9820 - real_acc: 0.9744
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6秒 183毫秒/步 - aug_p: 0.0272 - d_loss: 0.0792 - g_loss: 4.9001 - gen_acc: 0.9816 - real_acc: 0.9744
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 182毫秒/步 - aug_p: 0.0272 - d_loss: 0.0789 - g_loss: 4.9354 - gen_acc: 0.9814 - real_acc: 0.9745
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 182毫秒/步 - aug_p: 0.0273 - d_loss: 0.0785 - g_loss: 4.9643 - gen_acc: 0.9813 - real_acc: 0.9747
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 182毫秒/步 - aug_p: 0.0273 - d_loss: 0.0781 - g_loss: 4.9864 - gen_acc: 0.9814 - real_acc: 0.9749
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 182毫秒/步 - aug_p: 0.0273 - d_loss: 0.0778 - g_loss: 4.9973 - gen_acc: 0.9814 - real_acc: 0.9751
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 182毫秒/步 - aug_p: 0.0274 - d_loss: 0.0774 - g_loss: 5.0125 - gen_acc: 0.9815 - real_acc: 0.9753
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 182毫秒/步 - aug_p: 0.0274 - d_loss: 0.0770 - g_loss: 5.0280 - gen_acc: 0.9816 - real_acc: 0.9755
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 182毫秒/步 - aug_p: 0.0274 - d_loss: 0.0765 - g_loss: 5.0398 - gen_acc: 0.9818 - real_acc: 0.9757
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 182毫秒/步 - aug_p: 0.0275 - d_loss: 0.0760 - g_loss: 5.0455 - gen_acc: 0.9819 - real_acc: 0.9759
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 182毫秒/步 - aug_p: 0.0275 - d_loss: 0.0756 - g_loss: 5.0535 - gen_acc: 0.9820 - real_acc: 0.9760
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4秒 181毫秒/步 - aug_p: 0.0275 - d_loss: 0.0752 - g_loss: 5.0590 - gen_acc: 0.9822 - real_acc: 0.9762
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0276 - d_loss: 0.0749 - g_loss: 5.0595 - gen_acc: 0.9823 - real_acc: 0.9763
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0276 - d_loss: 0.0746 - g_loss: 5.0650 - gen_acc: 0.9825 - real_acc: 0.9764
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0276 - d_loss: 0.0743 - g_loss: 5.0742 - gen_acc: 0.9826 - real_acc: 0.9765
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0277 - d_loss: 0.0740 - g_loss: 5.0823 - gen_acc: 0.9828 - real_acc: 0.9766
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0277 - d_loss: 0.0737 - g_loss: 5.0871 - gen_acc: 0.9829 - real_acc: 0.9767
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0277 - d_loss: 0.0734 - g_loss: 5.0913 - gen_acc: 0.9831 - real_acc: 0.9768
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0278 - d_loss: 0.0731 - g_loss: 5.0957 - gen_acc: 0.9832 - real_acc: 0.9769
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0278 - d_loss: 0.0727 - g_loss: 5.0986 - gen_acc: 0.9834 - real_acc: 0.9770
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0278 - d_loss: 0.0725 - g_loss: 5.0992 - gen_acc: 0.9835 - real_acc: 0.9771
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0278 - d_loss: 0.0722 - g_loss: 5.1012 - gen_acc: 0.9836 - real_acc: 0.9772
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0279 - d_loss: 0.0719 - g_loss: 5.1022 - gen_acc: 0.9838 - real_acc: 0.9773
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 181毫秒/步 - aug_p: 0.0279 - d_loss: 0.0718 - g_loss: 5.1007 - gen_acc: 0.9838 - real_acc: 0.9773
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 181毫秒/步 - aug_p: 0.0279 - d_loss: 0.0717 - g_loss: 5.1026 - gen_acc: 0.9839 - real_acc: 0.9773
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 181毫秒/步 - aug_p: 0.0280 - d_loss: 0.0716 - g_loss: 5.1070 - gen_acc: 0.9840 - real_acc: 0.9772
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 181毫秒/步 - aug_p: 0.0280 - d_loss: 0.0715 - g_loss: 5.1124 - gen_acc: 0.9840 - real_acc: 0.9772
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 181毫秒/步 - aug_p: 0.0280 - d_loss: 0.0714 - g_loss: 5.1178 - gen_acc: 0.9841 - real_acc: 0.9773
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1秒 181毫秒/步 - aug_p: 0.0281 - d_loss: 0.0712 - g_loss: 5.1221 - gen_acc: 0.9842 - real_acc: 0.9773
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 0秒 181毫秒/步 - aug_p: 0.0281 - d_loss: 0.0710 - g_loss: 5.1258 - gen_acc: 0.9843 - real_acc: 0.9773
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 181毫秒/步 - aug_p: 0.0281 - d_loss: 0.0708 - g_loss: 5.1290 - gen_acc: 0.9843 - real_acc: 0.9773
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 181毫秒/步 - aug_p: 0.0282 - d_loss: 0.0707 - g_loss: 5.1315 - gen_acc: 0.9844 - real_acc: 0.9774
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 181毫秒/步 - aug_p: 0.0282 - d_loss: 0.0705 - g_loss: 5.1332 - gen_acc: 0.9845 - real_acc: 0.9774
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 181毫秒/步 - aug_p: 0.0282 - d_loss: 0.0703 - g_loss: 5.1347 - gen_acc: 0.9845 - real_acc: 0.9775
46/46 ━━━━━━━━━━━━━━━━━━━━ 0秒 181毫秒/步 - aug_p: 0.0283 - d_loss: 0.0701 - g_loss: 5.1357 - gen_acc: 0.9846 - real_acc: 0.9775
46/46 ━━━━━━━━━━━━━━━━━━━━ 12秒 267毫秒/步 - aug_p: 0.0283 - d_loss: 0.0699 - g_loss: 5.1367 - gen_acc: 0.9846 - real_acc: 0.9776 - val_kid: 6.2893
Epoch 7/10
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 7秒 174毫秒/步 - aug_p: 0.0328 - d_loss: 0.0456 - g_loss: 3.5202 - gen_acc: 1.0000 - real_acc: 1.0000
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 7秒 179毫秒/步 - aug_p: 0.0329 - d_loss: 0.0466 - g_loss: 3.7961 - gen_acc: 0.9980 - real_acc: 0.9980
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 179毫秒/步 - aug_p: 0.0329 - d_loss: 0.0471 - g_loss: 3.9462 - gen_acc: 0.9970 - real_acc: 0.9961
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 179毫秒/步 - aug_p: 0.0329 - d_loss: 0.0469 - g_loss: 4.0184 - gen_acc: 0.9967 - real_acc: 0.9946
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0330 - d_loss: 0.0463 - g_loss: 4.0670 - gen_acc: 0.9968 - real_acc: 0.9941
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0330 - d_loss: 0.0458 - g_loss: 4.1012 - gen_acc: 0.9969 - real_acc: 0.9938
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0330 - d_loss: 0.0451 - g_loss: 4.1240 - gen_acc: 0.9970 - real_acc: 0.9937
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0331 - d_loss: 0.0444 - g_loss: 4.1347 - gen_acc: 0.9971 - real_acc: 0.9938
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0331 - d_loss: 0.0438 - g_loss: 4.1433 - gen_acc: 0.9971 - real_acc: 0.9937
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0331 - d_loss: 0.0434 - g_loss: 4.1560 - gen_acc: 0.9970 - real_acc: 0.9936
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0332 - d_loss: 0.0431 - g_loss: 4.1654 - gen_acc: 0.9969 - real_acc: 0.9936
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0332 - d_loss: 0.0429 - g_loss: 4.1695 - gen_acc: 0.9969 - real_acc: 0.9935
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0333 - d_loss: 0.0428 - g_loss: 4.1758 - gen_acc: 0.9969 - real_acc: 0.9934
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0333 - d_loss: 0.0427 - g_loss: 4.1789 - gen_acc: 0.9969 - real_acc: 0.9932
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0333 - d_loss: 0.0426 - g_loss: 4.1799 - gen_acc: 0.9970 - real_acc: 0.9929
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0334 - d_loss: 0.0425 - g_loss: 4.1823 - gen_acc: 0.9970 - real_acc: 0.9927
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0334 - d_loss: 0.0425 - g_loss: 4.1836 - gen_acc: 0.9970 - real_acc: 0.9926
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0334 - d_loss: 0.0425 - g_loss: 4.1854 - gen_acc: 0.9971 - real_acc: 0.9923
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0335 - d_loss: 0.0426 - g_loss: 4.1843 - gen_acc: 0.9971 - real_acc: 0.9921
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0335 - d_loss: 0.0427 - g_loss: 4.1873 - gen_acc: 0.9971 - real_acc: 0.9920
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0335 - d_loss: 0.0427 - g_loss: 4.1927 - gen_acc: 0.9972 - real_acc: 0.9918
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0336 - d_loss: 0.0428 - g_loss: 4.1952 - gen_acc: 0.9972 - real_acc: 0.9916
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0336 - d_loss: 0.0428 - g_loss: 4.2017 - gen_acc: 0.9972 - real_acc: 0.9915
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0336 - d_loss: 0.0428 - g_loss: 4.2106 - gen_acc: 0.9972 - real_acc: 0.9914
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0337 - d_loss: 0.0428 - g_loss: 4.2181 - gen_acc: 0.9972 - real_acc: 0.9913
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0337 - d_loss: 0.0428 - g_loss: 4.2229 - gen_acc: 0.9972 - real_acc: 0.9912
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0337 - d_loss: 0.0429 - g_loss: 4.2318 - gen_acc: 0.9972 - real_acc: 0.9911
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0338 - d_loss: 0.0429 - g_loss: 4.2416 - gen_acc: 0.9972 - real_acc: 0.9910
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0338 - d_loss: 0.0430 - g_loss: 4.2491 - gen_acc: 0.9971 - real_acc: 0.9909
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0338 - d_loss: 0.0430 - g_loss: 4.2604 - gen_acc: 0.9971 - real_acc: 0.9908
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0339 - d_loss: 0.0431 - g_loss: 4.2736 - gen_acc: 0.9971 - real_acc: 0.9907
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0339 - d_loss: 0.0432 - g_loss: 4.2834 - gen_acc: 0.9970 - real_acc: 0.9906
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0339 - d_loss: 0.0439 - g_loss: 4.3010 - gen_acc: 0.9968 - real_acc: 0.9901
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0340 - d_loss: 0.0444 - g_loss: 4.3187 - gen_acc: 0.9967 - real_acc: 0.9897
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 180毫秒/步 - aug_p: 0.0340 - d_loss: 0.0455 - g_loss: 4.3319 - gen_acc: 0.9961 - real_acc: 0.9892
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 180毫秒/步 - aug_p: 0.0340 - d_loss: 0.0464 - g_loss: 4.3508 - gen_acc: 0.9956 - real_acc: 0.9889
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0341 - d_loss: 0.0474 - g_loss: 4.3765 - gen_acc: 0.9951 - real_acc: 0.9884
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0341 - d_loss: 0.0483 - g_loss: 4.4070 - gen_acc: 0.9947 - real_acc: 0.9880
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0341 - d_loss: 0.0492 - g_loss: 4.4400 - gen_acc: 0.9943 - real_acc: 0.9875
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1秒 180毫秒/步 - aug_p: 0.0342 - d_loss: 0.0499 - g_loss: 4.4739 - gen_acc: 0.9939 - real_acc: 0.9872
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 0秒 180毫秒/步 - aug_p: 0.0342 - d_loss: 0.0506 - g_loss: 4.5070 - gen_acc: 0.9935 - real_acc: 0.9868
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 180毫秒/步 - aug_p: 0.0342 - d_loss: 0.0513 - g_loss: 4.5375 - gen_acc: 0.9932 - real_acc: 0.9865
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 180毫秒/步 - aug_p: 0.0343 - d_loss: 0.0519 - g_loss: 4.5646 - gen_acc: 0.9929 - real_acc: 0.9862
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 180毫秒/步 - aug_p: 0.0343 - d_loss: 0.0525 - g_loss: 4.5904 - gen_acc: 0.9925 - real_acc: 0.9859
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 180毫秒/步 - aug_p: 0.0343 - d_loss: 0.0530 - g_loss: 4.6149 - gen_acc: 0.9923 - real_acc: 0.9857
46/46 ━━━━━━━━━━━━━━━━━━━━ 0秒 180毫秒/步 - aug_p: 0.0344 - d_loss: 0.0536 - g_loss: 4.6368 - gen_acc: 0.9920 - real_acc: 0.9854
46/46 ━━━━━━━━━━━━━━━━━━━━ 13秒 294毫秒/步 - aug_p: 0.0344 - d_loss: 0.0542 - g_loss: 4.6579 - gen_acc: 0.9917 - real_acc: 0.9852 - val_kid: 6.7378
Epoch 8/10
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 7秒 167毫秒/步 - aug_p: 0.0384 - d_loss: 0.1191 - g_loss: 4.3279 - gen_acc: 1.0000 - real_acc: 0.9219
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 7秒 179毫秒/步 - aug_p: 0.0384 - d_loss: 0.1470 - g_loss: 3.7525 - gen_acc: 0.9590 - real_acc: 0.9219
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0384 - d_loss: 0.1768 - g_loss: 4.0819 - gen_acc: 0.9544 - real_acc: 0.8950
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0384 - d_loss: 0.1801 - g_loss: 4.1693 - gen_acc: 0.9551 - real_acc: 0.8910
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0384 - d_loss: 0.1829 - g_loss: 4.1280 - gen_acc: 0.9491 - real_acc: 0.8934
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0384 - d_loss: 0.1828 - g_loss: 4.2346 - gen_acc: 0.9471 - real_acc: 0.8949
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 7秒 180毫秒/步 - aug_p: 0.0385 - d_loss: 0.1806 - g_loss: 4.3823 - gen_acc: 0.9470 - real_acc: 0.8968
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0385 - d_loss: 0.1765 - g_loss: 4.5079 - gen_acc: 0.9478 - real_acc: 0.8997
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0385 - d_loss: 0.1723 - g_loss: 4.5814 - gen_acc: 0.9486 - real_acc: 0.9028
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0385 - d_loss: 0.1679 - g_loss: 4.6213 - gen_acc: 0.9496 - real_acc: 0.9061
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0385 - d_loss: 0.1637 - g_loss: 4.6466 - gen_acc: 0.9507 - real_acc: 0.9092
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6秒 180毫秒/步 - aug_p: 0.0386 - d_loss: 0.1595 - g_loss: 4.6599 - gen_acc: 0.9520 - real_acc: 0.9122
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0386 - d_loss: 0.1561 - g_loss: 4.6625 - gen_acc: 0.9531 - real_acc: 0.9148
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0386 - d_loss: 0.1535 - g_loss: 4.6513 - gen_acc: 0.9537 - real_acc: 0.9172
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0386 - d_loss: 0.1530 - g_loss: 4.6600 - gen_acc: 0.9544 - real_acc: 0.9175
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0387 - d_loss: 0.1612 - g_loss: 4.6490 - gen_acc: 0.9512 - real_acc: 0.9180
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0387 - d_loss: 0.1727 - g_loss: 4.6715 - gen_acc: 0.9488 - real_acc: 0.9157
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0387 - d_loss: 0.1825 - g_loss: 4.7072 - gen_acc: 0.9469 - real_acc: 0.9135
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0387 - d_loss: 0.1904 - g_loss: 4.7428 - gen_acc: 0.9454 - real_acc: 0.9118
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 179毫秒/步 - aug_p: 0.0387 - d_loss: 0.1970 - g_loss: 4.7693 - gen_acc: 0.9440 - real_acc: 0.9106
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 179毫秒/步 - aug_p: 0.0387 - d_loss: 0.2029 - g_loss: 4.7854 - gen_acc: 0.9424 - real_acc: 0.9098
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0387 - d_loss: 0.2079 - g_loss: 4.7960 - gen_acc: 0.9409 - real_acc: 0.9092
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0388 - d_loss: 0.2119 - g_loss: 4.8033 - gen_acc: 0.9397 - real_acc: 0.9090
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 179毫秒/步 - aug_p: 0.0388 - d_loss: 0.2153 - g_loss: 4.8076 - gen_acc: 0.9387 - real_acc: 0.9088
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 179毫秒/步 - aug_p: 0.0388 - d_loss: 0.2182 - g_loss: 4.8077 - gen_acc: 0.9378 - real_acc: 0.9087
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 179毫秒/步 - aug_p: 0.0388 - d_loss: 0.2207 - g_loss: 4.8051 - gen_acc: 0.9371 - real_acc: 0.9087
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 179毫秒/步 - aug_p: 0.0388 - d_loss: 0.2229 - g_loss: 4.8007 - gen_acc: 0.9365 - real_acc: 0.9086
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0388 - d_loss: 0.2249 - g_loss: 4.7934 - gen_acc: 0.9360 - real_acc: 0.9086
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0388 - d_loss: 0.2265 - g_loss: 4.7860 - gen_acc: 0.9355 - real_acc: 0.9086
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0389 - d_loss: 0.2278 - g_loss: 4.7775 - gen_acc: 0.9352 - real_acc: 0.9087
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0389 - d_loss: 0.2290 - g_loss: 4.7677 - gen_acc: 0.9349 - real_acc: 0.9087
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0389 - d_loss: 0.2299 - g_loss: 4.7575 - gen_acc: 0.9347 - real_acc: 0.9089
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0389 - d_loss: 0.2305 - g_loss: 4.7470 - gen_acc: 0.9346 - real_acc: 0.9091
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0389 - d_loss: 0.2310 - g_loss: 4.7363 - gen_acc: 0.9345 - real_acc: 0.9093
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 180毫秒/步 - aug_p: 0.0389 - d_loss: 0.2314 - g_loss: 4.7249 - gen_acc: 0.9344 - real_acc: 0.9095
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 180毫秒/步 - aug_p: 0.0389 - d_loss: 0.2317 - g_loss: 4.7149 - gen_acc: 0.9344 - real_acc: 0.9098
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0390 - d_loss: 0.2319 - g_loss: 4.7045 - gen_acc: 0.9345 - real_acc: 0.9101
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0390 - d_loss: 0.2319 - g_loss: 4.6937 - gen_acc: 0.9345 - real_acc: 0.9104
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 179毫秒/步 - aug_p: 0.0390 - d_loss: 0.2319 - g_loss: 4.6838 - gen_acc: 0.9346 - real_acc: 0.9107
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1秒 179毫秒/步 - aug_p: 0.0390 - d_loss: 0.2318 - g_loss: 4.6734 - gen_acc: 0.9347 - real_acc: 0.9110
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 0秒 179毫秒/步 - aug_p: 0.0390 - d_loss: 0.2316 - g_loss: 4.6636 - gen_acc: 0.9349 - real_acc: 0.9114
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 179毫秒/步 - aug_p: 0.0390 - d_loss: 0.2313 - g_loss: 4.6532 - gen_acc: 0.9350 - real_acc: 0.9117
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 180毫秒/步 - aug_p: 0.0391 - d_loss: 0.2310 - g_loss: 4.6442 - gen_acc: 0.9352 - real_acc: 0.9120
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 180毫秒/步 - aug_p: 0.0391 - d_loss: 0.2306 - g_loss: 4.6361 - gen_acc: 0.9354 - real_acc: 0.9124
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 180毫秒/步 - aug_p: 0.0391 - d_loss: 0.2302 - g_loss: 4.6279 - gen_acc: 0.9356 - real_acc: 0.9127
46/46 ━━━━━━━━━━━━━━━━━━━━ 0秒 180毫秒/步 - aug_p: 0.0391 - d_loss: 0.2297 - g_loss: 4.6201 - gen_acc: 0.9358 - real_acc: 0.9131
46/46 ━━━━━━━━━━━━━━━━━━━━ 12秒 266毫秒/步 - aug_p: 0.0391 - d_loss: 0.2292 - g_loss: 4.6126 - gen_acc: 0.9361 - real_acc: 0.9134 - val_kid: 5.7109
Epoch 9/10
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 8秒 180毫秒/步 - aug_p: 0.0422 - d_loss: 0.0668 - g_loss: 3.8939 - gen_acc: 0.9922 - real_acc: 0.9922
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 8秒 187毫秒/步 - aug_p: 0.0422 - d_loss: 0.0676 - g_loss: 3.8295 - gen_acc: 0.9863 - real_acc: 0.9941
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 185毫秒/步 - aug_p: 0.0422 - d_loss: 0.0659 - g_loss: 3.8676 - gen_acc: 0.9865 - real_acc: 0.9944
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 183毫秒/步 - aug_p: 0.0423 - d_loss: 0.0703 - g_loss: 3.8084 - gen_acc: 0.9831 - real_acc: 0.9928
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 183毫秒/步 - aug_p: 0.0423 - d_loss: 0.0755 - g_loss: 3.9384 - gen_acc: 0.9821 - real_acc: 0.9880
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 183毫秒/步 - aug_p: 0.0423 - d_loss: 0.0781 - g_loss: 4.0291 - gen_acc: 0.9818 - real_acc: 0.9846
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 7秒 182毫秒/步 - aug_p: 0.0424 - d_loss: 0.0831 - g_loss: 4.0366 - gen_acc: 0.9779 - real_acc: 0.9828
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0424 - d_loss: 0.0888 - g_loss: 4.1585 - gen_acc: 0.9756 - real_acc: 0.9782
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0424 - d_loss: 0.0921 - g_loss: 4.3258 - gen_acc: 0.9744 - real_acc: 0.9750
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0424 - d_loss: 0.0937 - g_loss: 4.4967 - gen_acc: 0.9737 - real_acc: 0.9729
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0425 - d_loss: 0.0944 - g_loss: 4.6444 - gen_acc: 0.9732 - real_acc: 0.9715
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6秒 181毫秒/步 - aug_p: 0.0425 - d_loss: 0.0945 - g_loss: 4.7625 - gen_acc: 0.9730 - real_acc: 0.9706
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0425 - d_loss: 0.0943 - g_loss: 4.8487 - gen_acc: 0.9728 - real_acc: 0.9701
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0425 - d_loss: 0.0940 - g_loss: 4.9110 - gen_acc: 0.9726 - real_acc: 0.9698
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0426 - d_loss: 0.0935 - g_loss: 4.9645 - gen_acc: 0.9725 - real_acc: 0.9696
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0426 - d_loss: 0.0931 - g_loss: 5.0047 - gen_acc: 0.9726 - real_acc: 0.9694
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0426 - d_loss: 0.0930 - g_loss: 5.0287 - gen_acc: 0.9723 - real_acc: 0.9693
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0426 - d_loss: 0.0941 - g_loss: 5.0578 - gen_acc: 0.9721 - real_acc: 0.9679
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 181毫秒/步 - aug_p: 0.0427 - d_loss: 0.0976 - g_loss: 5.0709 - gen_acc: 0.9702 - real_acc: 0.9669
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 181毫秒/步 - aug_p: 0.0427 - d_loss: 0.1023 - g_loss: 5.0961 - gen_acc: 0.9687 - real_acc: 0.9645
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 181毫秒/步 - aug_p: 0.0427 - d_loss: 0.1064 - g_loss: 5.1232 - gen_acc: 0.9674 - real_acc: 0.9623
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 181毫秒/步 - aug_p: 0.0427 - d_loss: 0.1101 - g_loss: 5.1442 - gen_acc: 0.9662 - real_acc: 0.9603
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4秒 181毫秒/步 - aug_p: 0.0428 - d_loss: 0.1136 - g_loss: 5.1570 - gen_acc: 0.9649 - real_acc: 0.9587
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0428 - d_loss: 0.1166 - g_loss: 5.1674 - gen_acc: 0.9638 - real_acc: 0.9573
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0428 - d_loss: 0.1192 - g_loss: 5.1751 - gen_acc: 0.9628 - real_acc: 0.9561
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0428 - d_loss: 0.1216 - g_loss: 5.1786 - gen_acc: 0.9620 - real_acc: 0.9550
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0428 - d_loss: 0.1238 - g_loss: 5.1785 - gen_acc: 0.9612 - real_acc: 0.9539
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0429 - d_loss: 0.1258 - g_loss: 5.1765 - gen_acc: 0.9605 - real_acc: 0.9530
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0429 - d_loss: 0.1276 - g_loss: 5.1726 - gen_acc: 0.9599 - real_acc: 0.9521
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0429 - d_loss: 0.1294 - g_loss: 5.1667 - gen_acc: 0.9595 - real_acc: 0.9513
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0429 - d_loss: 0.1309 - g_loss: 5.1594 - gen_acc: 0.9590 - real_acc: 0.9506
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0429 - d_loss: 0.1323 - g_loss: 5.1512 - gen_acc: 0.9587 - real_acc: 0.9500
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0429 - d_loss: 0.1335 - g_loss: 5.1414 - gen_acc: 0.9584 - real_acc: 0.9494
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 180毫秒/步 - aug_p: 0.0430 - d_loss: 0.1346 - g_loss: 5.1320 - gen_acc: 0.9582 - real_acc: 0.9489
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 180毫秒/步 - aug_p: 0.0430 - d_loss: 0.1356 - g_loss: 5.1216 - gen_acc: 0.9580 - real_acc: 0.9484
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 180毫秒/步 - aug_p: 0.0430 - d_loss: 0.1365 - g_loss: 5.1109 - gen_acc: 0.9579 - real_acc: 0.9479
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0430 - d_loss: 0.1373 - g_loss: 5.0996 - gen_acc: 0.9578 - real_acc: 0.9475
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0430 - d_loss: 0.1379 - g_loss: 5.0882 - gen_acc: 0.9577 - real_acc: 0.9472
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 180毫秒/步 - aug_p: 0.0431 - d_loss: 0.1385 - g_loss: 5.0769 - gen_acc: 0.9577 - real_acc: 0.9468
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1秒 180毫秒/步 - aug_p: 0.0431 - d_loss: 0.1391 - g_loss: 5.0648 - gen_acc: 0.9577 - real_acc: 0.9466
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 0秒 180毫秒/步 - aug_p: 0.0431 - d_loss: 0.1395 - g_loss: 5.0535 - gen_acc: 0.9577 - real_acc: 0.9463
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 180毫秒/步 - aug_p: 0.0431 - d_loss: 0.1400 - g_loss: 5.0419 - gen_acc: 0.9576 - real_acc: 0.9461
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 180毫秒/步 - aug_p: 0.0431 - d_loss: 0.1403 - g_loss: 5.0307 - gen_acc: 0.9577 - real_acc: 0.9459
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 180毫秒/步 - aug_p: 0.0431 - d_loss: 0.1406 - g_loss: 5.0198 - gen_acc: 0.9577 - real_acc: 0.9458
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 180毫秒/步 - aug_p: 0.0432 - d_loss: 0.1408 - g_loss: 5.0087 - gen_acc: 0.9577 - real_acc: 0.9456
46/46 ━━━━━━━━━━━━━━━━━━━━ 0秒 180毫秒/步 - aug_p: 0.0432 - d_loss: 0.1410 - g_loss: 4.9981 - gen_acc: 0.9578 - real_acc: 0.9455
46/46 ━━━━━━━━━━━━━━━━━━━━ 14秒 300毫秒/步 - aug_p: 0.0432 - d_loss: 0.1411 - g_loss: 4.9879 - gen_acc: 0.9579 - real_acc: 0.9455 - val_kid: 3.6018
Epoch 10/10
1/46 [37m━━━━━━━━━━━━━━━━━━━━ 5分15秒 7秒/步 - aug_p: 0.0464 - d_loss: 0.0324 - g_loss: 4.1750 - gen_acc: 1.0000 - real_acc: 0.9922
2/46 [37m━━━━━━━━━━━━━━━━━━━━ 8秒 195毫秒/步 - aug_p: 0.0464 - d_loss: 0.0337 - g_loss: 4.0349 - gen_acc: 0.9980 - real_acc: 0.9941
3/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 8秒 186毫秒/步 - aug_p: 0.0464 - d_loss: 0.0367 - g_loss: 4.0199 - gen_acc: 0.9978 - real_acc: 0.9918
4/46 ━ [37m━━━━━━━━━━━━━━━━━━━ 7秒 184毫秒/步 - aug_p: 0.0465 - d_loss: 0.0374 - g_loss: 4.0297 - gen_acc: 0.9979 - real_acc: 0.9909
5/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 183毫秒/步 - aug_p: 0.0465 - d_loss: 0.0380 - g_loss: 4.0271 - gen_acc: 0.9980 - real_acc: 0.9902
6/46 ━━ [37m━━━━━━━━━━━━━━━━━━ 7秒 183毫秒/步 - aug_p: 0.0465 - d_loss: 0.0383 - g_loss: 4.0130 - gen_acc: 0.9981 - real_acc: 0.9901
7/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 7秒 183毫秒/步 - aug_p: 0.0466 - d_loss: 0.0385 - g_loss: 4.0148 - gen_acc: 0.9982 - real_acc: 0.9901
8/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0466 - d_loss: 0.0389 - g_loss: 4.0141 - gen_acc: 0.9983 - real_acc: 0.9902
9/46 ━━━ [37m━━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0467 - d_loss: 0.0393 - g_loss: 4.0076 - gen_acc: 0.9984 - real_acc: 0.9903
10/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0467 - d_loss: 0.0397 - g_loss: 4.0031 - gen_acc: 0.9985 - real_acc: 0.9903
11/46 ━━━━ [37m━━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0467 - d_loss: 0.0402 - g_loss: 3.9981 - gen_acc: 0.9985 - real_acc: 0.9902
12/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 6秒 182毫秒/步 - aug_p: 0.0468 - d_loss: 0.0406 - g_loss: 3.9968 - gen_acc: 0.9985 - real_acc: 0.9902
13/46 ━━━━━ [37m━━━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0468 - d_loss: 0.0411 - g_loss: 3.9967 - gen_acc: 0.9985 - real_acc: 0.9899
14/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0468 - d_loss: 0.0418 - g_loss: 3.9930 - gen_acc: 0.9984 - real_acc: 0.9897
15/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0469 - d_loss: 0.0428 - g_loss: 3.9956 - gen_acc: 0.9982 - real_acc: 0.9893
16/46 ━━━━━━ [37m━━━━━━━━━━━━━━ 5秒 181毫秒/步 - aug_p: 0.0469 - d_loss: 0.0436 - g_loss: 3.9957 - gen_acc: 0.9980 - real_acc: 0.9890
17/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0469 - d_loss: 0.0443 - g_loss: 3.9983 - gen_acc: 0.9978 - real_acc: 0.9887
18/46 ━━━━━━━ [37m━━━━━━━━━━━━━ 5秒 180毫秒/步 - aug_p: 0.0470 - d_loss: 0.0450 - g_loss: 3.9978 - gen_acc: 0.9977 - real_acc: 0.9885
19/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0470 - d_loss: 0.0457 - g_loss: 3.9987 - gen_acc: 0.9976 - real_acc: 0.9883
20/46 ━━━━━━━━ [37m━━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0470 - d_loss: 0.0464 - g_loss: 3.9966 - gen_acc: 0.9974 - real_acc: 0.9880
21/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0471 - d_loss: 0.0472 - g_loss: 3.9956 - gen_acc: 0.9973 - real_acc: 0.9877
22/46 ━━━━━━━━━ [37m━━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0471 - d_loss: 0.0482 - g_loss: 3.9910 - gen_acc: 0.9969 - real_acc: 0.9874
23/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 4秒 180毫秒/步 - aug_p: 0.0471 - d_loss: 0.0501 - g_loss: 3.9936 - gen_acc: 0.9965 - real_acc: 0.9862
24/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0472 - d_loss: 0.0532 - g_loss: 3.9900 - gen_acc: 0.9949 - real_acc: 0.9853
25/46 ━━━━━━━━━━ [37m━━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0472 - d_loss: 0.0576 - g_loss: 3.9964 - gen_acc: 0.9935 - real_acc: 0.9832
26/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 180毫秒/步 - aug_p: 0.0472 - d_loss: 0.0624 - g_loss: 3.9986 - gen_acc: 0.9917 - real_acc: 0.9813
27/46 ━━━━━━━━━━━ [37m━━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0472 - d_loss: 0.0667 - g_loss: 4.0030 - gen_acc: 0.9901 - real_acc: 0.9795
28/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0473 - d_loss: 0.0707 - g_loss: 4.0083 - gen_acc: 0.9887 - real_acc: 0.9778
29/46 ━━━━━━━━━━━━ [37m━━━━━━━━ 3秒 181毫秒/步 - aug_p: 0.0473 - d_loss: 0.0744 - g_loss: 4.0128 - gen_acc: 0.9873 - real_acc: 0.9762
30/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0473 - d_loss: 0.0776 - g_loss: 4.0161 - gen_acc: 0.9862 - real_acc: 0.9748
31/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0473 - d_loss: 0.0806 - g_loss: 4.0186 - gen_acc: 0.9851 - real_acc: 0.9735
32/46 ━━━━━━━━━━━━━ [37m━━━━━━━ 2秒 181毫秒/步 - aug_p: 0.0474 - d_loss: 0.0832 - g_loss: 4.0199 - gen_acc: 0.9841 - real_acc: 0.9724
33/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 182毫秒/步 - aug_p: 0.0474 - d_loss: 0.0856 - g_loss: 4.0204 - gen_acc: 0.9832 - real_acc: 0.9714
34/46 ━━━━━━━━━━━━━━ [37m━━━━━━ 2秒 182毫秒/步 - aug_p: 0.0474 - d_loss: 0.0878 - g_loss: 4.0206 - gen_acc: 0.9825 - real_acc: 0.9705
35/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 182毫秒/步 - aug_p: 0.0474 - d_loss: 0.0898 - g_loss: 4.0206 - gen_acc: 0.9818 - real_acc: 0.9697
36/46 ━━━━━━━━━━━━━━━ [37m━━━━━ 1秒 182毫秒/步 - aug_p: 0.0475 - d_loss: 0.0916 - g_loss: 4.0200 - gen_acc: 0.9811 - real_acc: 0.9690
37/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 182毫秒/步 - aug_p: 0.0475 - d_loss: 0.0933 - g_loss: 4.0193 - gen_acc: 0.9805 - real_acc: 0.9683
38/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 182毫秒/步 - aug_p: 0.0475 - d_loss: 0.0948 - g_loss: 4.0185 - gen_acc: 0.9800 - real_acc: 0.9677
39/46 ━━━━━━━━━━━━━━━━ [37m━━━━ 1秒 182毫秒/步 - aug_p: 0.0475 - d_loss: 0.0961 - g_loss: 4.0171 - gen_acc: 0.9796 - real_acc: 0.9672
40/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 1秒 182毫秒/步 - aug_p: 0.0475 - d_loss: 0.0974 - g_loss: 4.0158 - gen_acc: 0.9791 - real_acc: 0.9667
41/46 ━━━━━━━━━━━━━━━━━ [37m━━━ 0秒 182毫秒/步 - aug_p: 0.0476 - d_loss: 0.0985 - g_loss: 4.0146 - gen_acc: 0.9787 - real_acc: 0.9662
42/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 182毫秒/步 - aug_p: 0.0476 - d_loss: 0.0995 - g_loss: 4.0133 - gen_acc: 0.9784 - real_acc: 0.9658
43/46 ━━━━━━━━━━━━━━━━━━ [37m━━ 0秒 182毫秒/步 - aug_p: 0.0476 - d_loss: 0.1005 - g_loss: 4.0119 - gen_acc: 0.9781 - real_acc: 0.9655
44/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 182毫秒/步 - aug_p: 0.0476 - d_loss: 0.1013 - g_loss: 4.0102 - gen_acc: 0.9778 - real_acc: 0.9652
45/46 ━━━━━━━━━━━━━━━━━━━ [37m━ 0秒 182毫秒/步 - aug_p: 0.0476 - d_loss: 0.1021 - g_loss: 4.0083 - gen_acc: 0.9775 - real_acc: 0.9649
46/46 ━━━━━━━━━━━━━━━━━━━━ 0秒 182毫秒/步 - aug_p: 0.0477 - d_loss: 0.1028 - g_loss: 4.0070 - gen_acc: 0.9773 - real_acc: 0.9647
46/46 ━━━━━━━━━━━━━━━━━━━━ 21秒 304毫秒/步 - aug_p: 0.0477 - d_loss: 0.1035 - g_loss: 4.0058 - gen_acc: 0.9771 - real_acc: 0.9644 - val_kid: 3.0212
<keras.src.callbacks.history.History at 0x794f705d3390>
# load the best model and generate images
model.load_weights(checkpoint_path)
model.plot_images()
通过运行 400 个 epoch 的训练(在 Colab 笔记本中需要 2-3 小时),可以使用此代码示例获得高质量的图像生成。
在 400 个 epoch 训练中随机一批图像的演变过程(ema=0.999 用于动画平滑):
选定图像批次之间的潜在空间插值:
我还建议尝试在其他数据集上进行训练,例如 CelebA。根据我的经验,无需更改任何超参数即可获得良好的结果(尽管判别器增强可能不是必要的)。
我希望通过此示例找到 GAN 的易于实现性和生成质量之间的良好平衡。在准备过程中,我使用此仓库进行了多次消融实验。
在本节中,我将按主观重要性顺序列出经验教训和我的建议。
我建议查看 DCGAN 论文、此 NeurIPS 演讲 和此 大规模 GAN 研究,以了解其他人对此主题的看法。
其他 GAN 相关的 Keras 代码示例
现代 GAN 架构系列
最近关于 GAN 的文献综述: 演讲