代码示例 / 生成式深度学习 / 去噪扩散隐式模型

去噪扩散隐式模型

作者: András Béres
创建日期 2022/06/24
上次修改日期 2022/06/24
描述:使用去噪扩散隐式模型生成花朵图像。

ⓘ 此示例使用 Keras 3

在 Colab 中查看 GitHub 源代码


简介

什么是扩散模型?

最近,去噪扩散模型,包括基于分数的生成模型,作为一种强大的生成模型类别而受到欢迎,它可以甚至生成对抗网络 (GAN)在图像合成质量方面相媲美。它们往往生成更多样化的样本,同时训练稳定且易于扩展。最近的大型扩散模型,如DALL-E 2Imagen,展示了令人难以置信的文本到图像生成能力。然而,它们的缺点之一是,从它们中采样速度较慢,因为生成图像需要多次前向传递。

扩散指的是逐步将结构化信号(图像)转换为噪声的过程。通过模拟扩散,我们可以从训练图像生成噪声图像,并可以训练神经网络尝试对其进行去噪。使用训练好的网络,我们可以模拟扩散的反面,即反向扩散,这是图像从噪声中出现的过程。

diffusion process gif

一句话总结:扩散模型经过训练可以去除噪声图像的噪声,并且可以通过迭代去除纯噪声来生成图像。

本示例的目标

此代码示例旨在成为扩散模型的一个最小但功能完整的(具有生成质量指标)实现,具有适度的计算需求和合理的性能。我的实现选择和超参数调整都是围绕这些目标进行的。

由于目前扩散模型的文献在数学上相当复杂,具有多个理论框架(分数匹配微分方程马尔可夫链),有时甚至存在冲突的符号(见附录 C.2),因此尝试理解它们可能令人望而生畏。在本示例中,我对这些模型的看法是,它们学习将噪声图像分离成其图像和高斯噪声成分。

在本示例中,我努力将所有冗长的数学表达式分解成易于理解的部分,并为所有变量提供了说明性名称。我还包含了许多指向相关文献的链接,以帮助感兴趣的读者更深入地了解该主题,希望此代码示例能成为学习扩散模型的从业者的良好起点。

在以下部分,我们将实现去噪扩散隐式模型 (DDIM)的连续时间版本,并使用确定性采样。


设置

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import math
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_datasets as tfds

import keras
from keras import layers
from keras import ops

超参数

# data
dataset_name = "oxford_flowers102"
dataset_repetitions = 5
num_epochs = 1  # train for at least 50 epochs for good results
image_size = 64
# KID = Kernel Inception Distance, see related section
kid_image_size = 75
kid_diffusion_steps = 5
plot_diffusion_steps = 20

# sampling
min_signal_rate = 0.02
max_signal_rate = 0.95

# architecture
embedding_dims = 32
embedding_max_frequency = 1000.0
widths = [32, 64, 96, 128]
block_depth = 2

# optimization
batch_size = 64
ema = 0.999
learning_rate = 1e-3
weight_decay = 1e-4

数据管道

我们将使用牛津花卉 102数据集生成花朵图像,这是一个包含大约 8000 张图像的多样化自然数据集。不幸的是,官方拆分是不平衡的,因为大多数图像都包含在测试拆分中。我们使用Tensorflow 数据集切片 API创建新的拆分(80% 训练,20% 验证)。我们将中心裁剪作为预处理应用,并多次重复数据集(原因在下一节中给出)。

def preprocess_image(data):
    # center crop image
    height = ops.shape(data["image"])[0]
    width = ops.shape(data["image"])[1]
    crop_size = ops.minimum(height, width)
    image = tf.image.crop_to_bounding_box(
        data["image"],
        (height - crop_size) // 2,
        (width - crop_size) // 2,
        crop_size,
        crop_size,
    )

    # resize and clip
    # for image downsampling it is important to turn on antialiasing
    image = tf.image.resize(image, size=[image_size, image_size], antialias=True)
    return ops.clip(image / 255.0, 0.0, 1.0)


def prepare_dataset(split):
    # the validation dataset is shuffled as well, because data order matters
    # for the KID estimation
    return (
        tfds.load(dataset_name, split=split, shuffle_files=True)
        .map(preprocess_image, num_parallel_calls=tf.data.AUTOTUNE)
        .cache()
        .repeat(dataset_repetitions)
        .shuffle(10 * batch_size)
        .batch(batch_size, drop_remainder=True)
        .prefetch(buffer_size=tf.data.AUTOTUNE)
    )


# load dataset
train_dataset = prepare_dataset("train[:80%]+validation[:80%]+test[:80%]")
val_dataset = prepare_dataset("train[80%:]+validation[80%:]+test[80%:]")

核初始距离

核初始距离 (KID) 是一种图像质量指标,它被提议作为流行的弗雷谢初始距离 (FID)的替代方案。我更喜欢 KID 而不是 FID,因为它实现起来更简单,可以逐批估计,并且计算量更轻。更多详细信息请参阅此处

在本示例中,图像在 Inception 网络的最小可能分辨率(75x75 而不是 299x299)处进行评估,并且出于计算效率的考虑,该指标仅在验证集上进行测量。出于同样的原因,我们还将评估时的采样步数限制为 5。

由于数据集相对较小,因此我们每个 epoch 会多次遍历训练和验证拆分,因为 KID 估计存在噪声且计算量大,因此我们希望仅在多次迭代后进行评估,但要进行多次迭代。

@keras.saving.register_keras_serializable()
class KID(keras.metrics.Metric):
    def __init__(self, name, **kwargs):
        super().__init__(name=name, **kwargs)

        # KID is estimated per batch and is averaged across batches
        self.kid_tracker = keras.metrics.Mean(name="kid_tracker")

        # a pretrained InceptionV3 is used without its classification layer
        # transform the pixel values to the 0-255 range, then use the same
        # preprocessing as during pretraining
        self.encoder = keras.Sequential(
            [
                keras.Input(shape=(image_size, image_size, 3)),
                layers.Rescaling(255.0),
                layers.Resizing(height=kid_image_size, width=kid_image_size),
                layers.Lambda(keras.applications.inception_v3.preprocess_input),
                keras.applications.InceptionV3(
                    include_top=False,
                    input_shape=(kid_image_size, kid_image_size, 3),
                    weights="imagenet",
                ),
                layers.GlobalAveragePooling2D(),
            ],
            name="inception_encoder",
        )

    def polynomial_kernel(self, features_1, features_2):
        feature_dimensions = ops.cast(ops.shape(features_1)[1], dtype="float32")
        return (
            features_1 @ ops.transpose(features_2) / feature_dimensions + 1.0
        ) ** 3.0

    def update_state(self, real_images, generated_images, sample_weight=None):
        real_features = self.encoder(real_images, training=False)
        generated_features = self.encoder(generated_images, training=False)

        # compute polynomial kernels using the two sets of features
        kernel_real = self.polynomial_kernel(real_features, real_features)
        kernel_generated = self.polynomial_kernel(
            generated_features, generated_features
        )
        kernel_cross = self.polynomial_kernel(real_features, generated_features)

        # estimate the squared maximum mean discrepancy using the average kernel values
        batch_size = real_features.shape[0]
        batch_size_f = ops.cast(batch_size, dtype="float32")
        mean_kernel_real = ops.sum(kernel_real * (1.0 - ops.eye(batch_size))) / (
            batch_size_f * (batch_size_f - 1.0)
        )
        mean_kernel_generated = ops.sum(
            kernel_generated * (1.0 - ops.eye(batch_size))
        ) / (batch_size_f * (batch_size_f - 1.0))
        mean_kernel_cross = ops.mean(kernel_cross)
        kid = mean_kernel_real + mean_kernel_generated - 2.0 * mean_kernel_cross

        # update the average KID estimate
        self.kid_tracker.update_state(kid)

    def result(self):
        return self.kid_tracker.result()

    def reset_state(self):
        self.kid_tracker.reset_state()

网络架构

在这里,我们指定将用于去噪的神经网络的架构。我们构建了一个U-Net,具有相同的输入和输出维度。U-Net 是一种流行的语义分割架构,其主要思想是它逐步对输入图像进行下采样,然后进行上采样,并在具有相同分辨率的层之间添加跳过连接。这些有助于梯度流动,并避免引入表示瓶颈,这与通常的自动编码器不同。基于此,可以将扩散模型视为没有瓶颈的去噪自动编码器

该网络接收两个输入,即噪声图像及其噪声成分的方差。后者是必需的,因为对信号进行去噪需要在不同噪声水平下进行不同的操作。我们使用正弦嵌入变换噪声方差,类似于在transformerNeRF中使用的位置编码。这有助于网络噪声水平高度敏感,这对于获得良好的性能至关重要。我们使用Lambda 层实现正弦嵌入。

其他一些注意事项

  • 我们使用Keras 函数式 API构建网络,并使用闭包以一致的风格构建层块。
  • 扩散模型将扩散过程的时间步长索引嵌入到每个卷积块中,而不是噪声方差,而基于分数的模型(表 1)通常使用噪声水平的一些函数。我更喜欢后者,以便我们可以在推理时更改采样计划,而无需重新训练网络。
  • 扩散模型将嵌入分别输入到每个卷积块中。为了简单起见,我们只在网络的开头输入它,根据我的经验,这几乎不会降低性能,因为跳过连接和残差连接有助于信息正确地传播到整个网络。
  • 在文献中,通常在较低分辨率下使用注意力层以获得更好的全局一致性。为了简单起见,我省略了它。
  • 我们禁用批归一化层的可学习中心和缩放参数,因为后面的卷积层使它们变得多余。
  • 我们建议将最后一个卷积的内核初始化为全零,这是一个良好的实践,使网络在初始化后仅预测零,这是其目标的均值。这将改善训练开始时的行为,并使均方误差损失从恰好 1 开始。
@keras.saving.register_keras_serializable()
def sinusoidal_embedding(x):
    embedding_min_frequency = 1.0
    frequencies = ops.exp(
        ops.linspace(
            ops.log(embedding_min_frequency),
            ops.log(embedding_max_frequency),
            embedding_dims // 2,
        )
    )
    angular_speeds = ops.cast(2.0 * math.pi * frequencies, "float32")
    embeddings = ops.concatenate(
        [ops.sin(angular_speeds * x), ops.cos(angular_speeds * x)], axis=3
    )
    return embeddings


def ResidualBlock(width):
    def apply(x):
        input_width = x.shape[3]
        if input_width == width:
            residual = x
        else:
            residual = layers.Conv2D(width, kernel_size=1)(x)
        x = layers.BatchNormalization(center=False, scale=False)(x)
        x = layers.Conv2D(width, kernel_size=3, padding="same", activation="swish")(x)
        x = layers.Conv2D(width, kernel_size=3, padding="same")(x)
        x = layers.Add()([x, residual])
        return x

    return apply


def DownBlock(width, block_depth):
    def apply(x):
        x, skips = x
        for _ in range(block_depth):
            x = ResidualBlock(width)(x)
            skips.append(x)
        x = layers.AveragePooling2D(pool_size=2)(x)
        return x

    return apply


def UpBlock(width, block_depth):
    def apply(x):
        x, skips = x
        x = layers.UpSampling2D(size=2, interpolation="bilinear")(x)
        for _ in range(block_depth):
            x = layers.Concatenate()([x, skips.pop()])
            x = ResidualBlock(width)(x)
        return x

    return apply


def get_network(image_size, widths, block_depth):
    noisy_images = keras.Input(shape=(image_size, image_size, 3))
    noise_variances = keras.Input(shape=(1, 1, 1))

    e = layers.Lambda(sinusoidal_embedding, output_shape=(1, 1, 32))(noise_variances)
    e = layers.UpSampling2D(size=image_size, interpolation="nearest")(e)

    x = layers.Conv2D(widths[0], kernel_size=1)(noisy_images)
    x = layers.Concatenate()([x, e])

    skips = []
    for width in widths[:-1]:
        x = DownBlock(width, block_depth)([x, skips])

    for _ in range(block_depth):
        x = ResidualBlock(widths[-1])(x)

    for width in reversed(widths[:-1]):
        x = UpBlock(width, block_depth)([x, skips])

    x = layers.Conv2D(3, kernel_size=1, kernel_initializer="zeros")(x)

    return keras.Model([noisy_images, noise_variances], x, name="residual_unet")

这展示了函数式 API 的强大功能。请注意,我们如何使用 80 行代码构建了一个相对复杂的 U-Net,其中包含跳过连接、残差块、多个输入和正弦嵌入!


扩散模型

扩散计划

假设扩散过程从时间 = 0 开始,并在时间 = 1 结束。此变量称为扩散时间,可以是离散的(在扩散模型中很常见)或连续的(在基于分数的模型中很常见)。我选择后者,以便可以在推理时更改采样步数。

我们需要有一个函数,告诉我们在扩散过程中的每个点,对应于实际扩散时间的噪声图像的噪声水平和信号水平。这将被称为扩散计划(参见 diffusion_schedule())。

此时间表输出两个量:noise_ratesignal_rate(分别对应于 DDIM 论文中的 sqrt(1 - alpha) 和 sqrt(alpha))。我们通过按其相应的比率对随机噪声和训练图像进行加权并将它们加在一起,生成噪声图像。

由于(标准正态)随机噪声和(归一化)图像都具有零均值和单位方差,因此噪声率和信号率可以解释为其在噪声图像中分量的标准差,而其比率的平方可以解释为其方差(或在信号处理意义上的功率)。这些比率将始终设置为其平方和为 1,这意味着噪声图像将始终具有单位方差,就像其未缩放的分量一样。

我们将使用文献中常用的 余弦时间表(第 3.2 节) 的简化连续版本。此时间表是对称的,在扩散过程的开始和结束时缓慢,并且它还具有很好的几何解释,使用 单位圆的三角特性

diffusion schedule gif

训练过程

降噪扩散模型的训练过程(参见 train_step()denoise())如下:我们均匀地采样随机扩散时间,并将训练图像与对应于扩散时间的随机高斯噪声混合。然后,我们训练模型将噪声图像分离成两个组成部分。

通常,神经网络被训练来预测未缩放的噪声分量,可以使用信号率和噪声率从该分量计算预测的图像分量。理论上应该使用逐像素 均方误差,但我建议改为使用 平均绝对误差(类似于 实现),这在该数据集上产生了更好的结果。

采样(反向扩散)

在采样(参见 reverse_diffusion())时,在每个步骤中,我们获取噪声图像的上一步估计,并使用我们的网络将其分离成图像和噪声。然后,我们使用下一步的信号率和噪声率重新组合这些分量。

尽管 DDIM 的公式 12 中显示了类似的视图,但我认为上述采样公式的解释并不广为人知。

此示例仅实现了 DDIM 中的确定性采样过程,这对应于论文中的eta = 0。也可以使用随机采样(在这种情况下,模型成为 降噪扩散概率模型 (DDPM)),其中预测噪声的一部分被相同或更大的随机噪声替换(参见公式 16 及其以下内容)。

可以在不重新训练网络的情况下使用随机采样(因为两种模型的训练方式相同),它可以提高样本质量,但另一方面通常需要更多采样步骤。

@keras.saving.register_keras_serializable()
class DiffusionModel(keras.Model):
    def __init__(self, image_size, widths, block_depth):
        super().__init__()

        self.normalizer = layers.Normalization()
        self.network = get_network(image_size, widths, block_depth)
        self.ema_network = keras.models.clone_model(self.network)

    def compile(self, **kwargs):
        super().compile(**kwargs)

        self.noise_loss_tracker = keras.metrics.Mean(name="n_loss")
        self.image_loss_tracker = keras.metrics.Mean(name="i_loss")
        self.kid = KID(name="kid")

    @property
    def metrics(self):
        return [self.noise_loss_tracker, self.image_loss_tracker, self.kid]

    def denormalize(self, images):
        # convert the pixel values back to 0-1 range
        images = self.normalizer.mean + images * self.normalizer.variance**0.5
        return ops.clip(images, 0.0, 1.0)

    def diffusion_schedule(self, diffusion_times):
        # diffusion times -> angles
        start_angle = ops.cast(ops.arccos(max_signal_rate), "float32")
        end_angle = ops.cast(ops.arccos(min_signal_rate), "float32")

        diffusion_angles = start_angle + diffusion_times * (end_angle - start_angle)

        # angles -> signal and noise rates
        signal_rates = ops.cos(diffusion_angles)
        noise_rates = ops.sin(diffusion_angles)
        # note that their squared sum is always: sin^2(x) + cos^2(x) = 1

        return noise_rates, signal_rates

    def denoise(self, noisy_images, noise_rates, signal_rates, training):
        # the exponential moving average weights are used at evaluation
        if training:
            network = self.network
        else:
            network = self.ema_network

        # predict noise component and calculate the image component using it
        pred_noises = network([noisy_images, noise_rates**2], training=training)
        pred_images = (noisy_images - noise_rates * pred_noises) / signal_rates

        return pred_noises, pred_images

    def reverse_diffusion(self, initial_noise, diffusion_steps):
        # reverse diffusion = sampling
        num_images = initial_noise.shape[0]
        step_size = 1.0 / diffusion_steps

        # important line:
        # at the first sampling step, the "noisy image" is pure noise
        # but its signal rate is assumed to be nonzero (min_signal_rate)
        next_noisy_images = initial_noise
        for step in range(diffusion_steps):
            noisy_images = next_noisy_images

            # separate the current noisy image to its components
            diffusion_times = ops.ones((num_images, 1, 1, 1)) - step * step_size
            noise_rates, signal_rates = self.diffusion_schedule(diffusion_times)
            pred_noises, pred_images = self.denoise(
                noisy_images, noise_rates, signal_rates, training=False
            )
            # network used in eval mode

            # remix the predicted components using the next signal and noise rates
            next_diffusion_times = diffusion_times - step_size
            next_noise_rates, next_signal_rates = self.diffusion_schedule(
                next_diffusion_times
            )
            next_noisy_images = (
                next_signal_rates * pred_images + next_noise_rates * pred_noises
            )
            # this new noisy image will be used in the next step

        return pred_images

    def generate(self, num_images, diffusion_steps):
        # noise -> images -> denormalized images
        initial_noise = keras.random.normal(
            shape=(num_images, image_size, image_size, 3)
        )
        generated_images = self.reverse_diffusion(initial_noise, diffusion_steps)
        generated_images = self.denormalize(generated_images)
        return generated_images

    def train_step(self, images):
        # normalize images to have standard deviation of 1, like the noises
        images = self.normalizer(images, training=True)
        noises = keras.random.normal(shape=(batch_size, image_size, image_size, 3))

        # sample uniform random diffusion times
        diffusion_times = keras.random.uniform(
            shape=(batch_size, 1, 1, 1), minval=0.0, maxval=1.0
        )
        noise_rates, signal_rates = self.diffusion_schedule(diffusion_times)
        # mix the images with noises accordingly
        noisy_images = signal_rates * images + noise_rates * noises

        with tf.GradientTape() as tape:
            # train the network to separate noisy images to their components
            pred_noises, pred_images = self.denoise(
                noisy_images, noise_rates, signal_rates, training=True
            )

            noise_loss = self.loss(noises, pred_noises)  # used for training
            image_loss = self.loss(images, pred_images)  # only used as metric

        gradients = tape.gradient(noise_loss, self.network.trainable_weights)
        self.optimizer.apply_gradients(zip(gradients, self.network.trainable_weights))

        self.noise_loss_tracker.update_state(noise_loss)
        self.image_loss_tracker.update_state(image_loss)

        # track the exponential moving averages of weights
        for weight, ema_weight in zip(self.network.weights, self.ema_network.weights):
            ema_weight.assign(ema * ema_weight + (1 - ema) * weight)

        # KID is not measured during the training phase for computational efficiency
        return {m.name: m.result() for m in self.metrics[:-1]}

    def test_step(self, images):
        # normalize images to have standard deviation of 1, like the noises
        images = self.normalizer(images, training=False)
        noises = keras.random.normal(shape=(batch_size, image_size, image_size, 3))

        # sample uniform random diffusion times
        diffusion_times = keras.random.uniform(
            shape=(batch_size, 1, 1, 1), minval=0.0, maxval=1.0
        )
        noise_rates, signal_rates = self.diffusion_schedule(diffusion_times)
        # mix the images with noises accordingly
        noisy_images = signal_rates * images + noise_rates * noises

        # use the network to separate noisy images to their components
        pred_noises, pred_images = self.denoise(
            noisy_images, noise_rates, signal_rates, training=False
        )

        noise_loss = self.loss(noises, pred_noises)
        image_loss = self.loss(images, pred_images)

        self.image_loss_tracker.update_state(image_loss)
        self.noise_loss_tracker.update_state(noise_loss)

        # measure KID between real and generated images
        # this is computationally demanding, kid_diffusion_steps has to be small
        images = self.denormalize(images)
        generated_images = self.generate(
            num_images=batch_size, diffusion_steps=kid_diffusion_steps
        )
        self.kid.update_state(images, generated_images)

        return {m.name: m.result() for m in self.metrics}

    def plot_images(self, epoch=None, logs=None, num_rows=3, num_cols=6):
        # plot random generated images for visual evaluation of generation quality
        generated_images = self.generate(
            num_images=num_rows * num_cols,
            diffusion_steps=plot_diffusion_steps,
        )

        plt.figure(figsize=(num_cols * 2.0, num_rows * 2.0))
        for row in range(num_rows):
            for col in range(num_cols):
                index = row * num_cols + col
                plt.subplot(num_rows, num_cols, index + 1)
                plt.imshow(generated_images[index])
                plt.axis("off")
        plt.tight_layout()
        plt.show()
        plt.close()

训练

# create and compile the model
model = DiffusionModel(image_size, widths, block_depth)
# below tensorflow 2.9:
# pip install tensorflow_addons
# import tensorflow_addons as tfa
# optimizer=tfa.optimizers.AdamW
model.compile(
    optimizer=keras.optimizers.AdamW(
        learning_rate=learning_rate, weight_decay=weight_decay
    ),
    loss=keras.losses.mean_absolute_error,
)
# pixelwise mean absolute error is used as loss

# save the best model based on the validation KID metric
checkpoint_path = "checkpoints/diffusion_model.weights.h5"
checkpoint_callback = keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_path,
    save_weights_only=True,
    monitor="val_kid",
    mode="min",
    save_best_only=True,
)

# calculate mean and variance of training dataset for normalization
model.normalizer.adapt(train_dataset)

# run training and plot generated images periodically
model.fit(
    train_dataset,
    epochs=num_epochs,
    validation_data=val_dataset,
    callbacks=[
        keras.callbacks.LambdaCallback(on_epoch_end=model.plot_images),
        checkpoint_callback,
    ],
)
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
 87910968/87910968 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step

 511/511 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - i_loss: 0.6896 - n_loss: 0.2961

png

 511/511 ━━━━━━━━━━━━━━━━━━━━ 110s 138ms/step - i_loss: 0.6891 - n_loss: 0.2959 - kid: 0.0000e+00 - val_i_loss: 2.5650 - val_kid: 2.0372 - val_n_loss: 0.7914

<keras.src.callbacks.history.History at 0x7f521b149870>

推理

# load the best model and generate images
model.load_weights(checkpoint_path)
model.plot_images()

png


结果

通过运行至少 50 个 epoch 的训练(在 T4 GPU 上需要 2 小时,在 A100 GPU 上需要 30 分钟),可以使用此代码示例获得高质量的图像生成。

一批图像在 80 个 epoch 训练中的演变(颜色伪影是由于 GIF 压缩造成的)

flowers training gif

使用相同初始噪声的 1 到 20 个采样步骤生成的图像

flowers sampling steps gif

初始噪声样本之间的(球面)插值

flowers interpolation gif

确定性采样过程(顶部为噪声图像,底部为预测图像,40 步)

flowers deterministic generation gif

随机采样过程(顶部为噪声图像,底部为预测图像,80 步)

flowers stochastic generation gif


经验教训

在准备此代码示例期间,我使用 此存储库 运行了许多实验。在本节中,我将根据我主观的重视程度列出我学到的经验教训和建议。

算法技巧

  • 最小和最大信号率:我发现最小信号率是一个重要的超参数。将其设置得太低会导致生成的图像过饱和,而将其设置得太高会导致图像欠饱和。我建议仔细调整它。此外,将其设置为 0 将导致除以零错误。最大信号率可以设置为 1,但我发现将其稍微降低可以提高生成质量。
  • 损失函数:虽然大型模型倾向于使用均方误差 (MSE) 损失,但我建议在此数据集上使用平均绝对误差 (MAE)。根据我的经验,MSE 损失会生成更多样化的样本(它似乎也更倾向于幻觉 第 3 节),而 MAE 损失则会生成更平滑的图像。我建议尝试两者。
  • 权重衰减:在扩展模型规模时,我偶尔会遇到训练发散的情况,发现权重衰减有助于以较低的性能成本避免不稳定性。这就是为什么我在此示例中使用 AdamW 而不是 Adam 的原因。
  • 权重的指数移动平均:这有助于降低 KID 指标的方差,并有助于在训练期间平均出短期变化。
  • 图像增强:虽然我未在此示例中使用图像增强,但根据我的经验,在训练中添加水平翻转可以提高生成性能,而随机裁剪则不会。由于我们使用有监督的降噪损失,因此过拟合可能是一个问题,因此在小型数据集上,图像增强可能很重要。还应注意不要使用 泄漏增强,例如,可以按照 此方法(第 5 节末尾) 进行操作。
  • 数据归一化:在文献中,图像的像素值通常转换为 -1 到 1 的范围。为了理论上的正确性,我将图像归一化为具有零均值和单位方差,这与随机噪声完全相同。
  • 噪声水平输入:我选择将噪声方差输入到网络中,因为它在我们采样时间表下是对称的。还可以输入噪声率(类似性能)、信号率(较低性能),甚至 对数信噪比(附录 B.1)(未尝试,因为其范围高度依赖于最小和最大信号率,并且需要相应地调整最小嵌入频率)。
  • 梯度裁剪:使用值为 1 的全局梯度裁剪可以帮助大型模型的训练稳定性,但根据我的经验,它会显著降低性能。
  • 残差连接缩减:对于 更深层的模型(附录 B),使用 1/sqrt(2) 缩放残差连接可能会有所帮助,但在我的情况下没有帮助。
  • 学习率:对我来说,Adam 优化器 的默认学习率 1e-3 效果非常好,但在 文献(表 11-13) 中,更低的学习率更为常见。

架构技巧

  • 正弦嵌入:在网络的噪声水平输入上使用正弦嵌入对于获得良好的性能至关重要。我建议将最小嵌入频率设置为该输入范围的倒数,并且由于我们在此示例中使用噪声方差,因此始终可以将其保留为 1。最大嵌入频率控制网络将对其敏感的噪声方差的最小变化,嵌入维度设置嵌入中的频率分量的数量。根据我的经验,性能对这些值不太敏感。
  • 跳跃连接:在网络架构中使用跳跃连接绝对至关重要,没有它们,模型将无法以良好的性能学习降噪。
  • 残差连接:根据我的经验,残差连接也显着提高了性能,但这可能是因为我们仅将噪声级别嵌入输入到网络的第一层而不是所有层中。
  • 归一化:在扩展模型规模时,我偶尔会遇到训练发散的情况,使用归一化层有助于缓解此问题。在文献中,通常在网络中使用 GroupNormalization(例如,使用 8 个组)或 LayerNormalization,但我选择使用 BatchNormalization,因为它在我的实验中提供了类似的好处,但在计算上更轻量级。
  • 激活函数:激活函数的选择对生成质量的影响比我预期的要大。在我的实验中,使用非单调激活函数优于单调激活函数(如 ReLU),其中 Swish 性能最佳(这也是 Imagen 使用的,第 41 页)。
  • 注意力机制:如前所述,在文献中,通常在低分辨率下使用 注意力层 以获得更好的全局一致性。为了简单起见,我省略了它们。
  • 上采样:网络中的 双线性插值和最近邻上采样 性能相似,但我没有尝试 转置卷积

有关 GAN 的类似列表,请查看 此 Keras 教程


接下来尝试什么?

如果您想更深入地研究该主题,我建议查看我为准备此代码示例而创建的 此存储库,该存储库以类似的风格实现了更广泛的功能,例如