作者: András Béres
创建日期 2022/06/24
最后修改 2022/06/24
描述: 使用去噪扩散隐式模型生成花朵图像。
最近,去噪扩散模型,包括基于分数的生成模型,作为一类强大的生成模型而广受欢迎,它们可以在图像合成质量方面媲美甚至生成对抗网络 (GAN)。它们倾向于生成更多样化的样本,同时训练稳定且易于扩展。最近的大型扩散模型,如DALL-E 2和Imagen,已经展示了令人难以置信的文本到图像生成能力。然而,它们的缺点之一是,它们的采样速度较慢,因为它们需要多次前向传递才能生成图像。
扩散是指将结构化信号(图像)逐步转化为噪声的过程。通过模拟扩散,我们可以从训练图像中生成噪声图像,并可以训练神经网络尝试对其进行去噪。使用训练好的网络,我们可以模拟扩散的反向过程,即反向扩散,这是图像从噪声中出现的过程。
一句话总结:扩散模型经过训练可以去除噪声图像的噪声,并且可以通过迭代去除纯噪声来生成图像。
此代码示例旨在成为扩散模型的最小但功能完整(具有生成质量指标)的实现,具有适度的计算要求和合理的性能。我的实现选择和超参数调整都是考虑到这些目标而进行的。
由于目前扩散模型的文献在数学上相当复杂,具有多个理论框架(分数匹配,微分方程,马尔可夫链),甚至有时会出现冲突的符号(参见附录 C.2),试图理解它们可能会令人望而生畏。在此示例中,我对这些模型的看法是,它们学会将噪声图像分离为其图像和高斯噪声分量。
在此示例中,我努力将所有长的数学表达式分解为易于理解的部分,并为所有变量赋予了解释性的名称。我还包含了许多相关文献的链接,以帮助感兴趣的读者更深入地了解该主题,希望此代码示例将成为从业人员学习扩散模型的良好起点。
在以下部分中,我们将实现具有确定性采样的去噪扩散隐式模型 (DDIM)的连续时间版本。
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import math
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorflow_datasets as tfds
import keras
from keras import layers
from keras import ops
# data
dataset_name = "oxford_flowers102"
dataset_repetitions = 5
num_epochs = 1 # train for at least 50 epochs for good results
image_size = 64
# KID = Kernel Inception Distance, see related section
kid_image_size = 75
kid_diffusion_steps = 5
plot_diffusion_steps = 20
# sampling
min_signal_rate = 0.02
max_signal_rate = 0.95
# architecture
embedding_dims = 32
embedding_max_frequency = 1000.0
widths = [32, 64, 96, 128]
block_depth = 2
# optimization
batch_size = 64
ema = 0.999
learning_rate = 1e-3
weight_decay = 1e-4
我们将使用牛津花朵 102数据集生成花朵图像,这是一个包含大约 8,000 张图像的多样化自然数据集。不幸的是,官方拆分是不平衡的,因为大多数图像都包含在测试拆分中。我们使用Tensorflow Datasets 切片 API 创建新的拆分(80% 训练,20% 验证)。我们应用中心裁剪作为预处理,并多次重复数据集(原因在下一节中给出)。
def preprocess_image(data):
# center crop image
height = ops.shape(data["image"])[0]
width = ops.shape(data["image"])[1]
crop_size = ops.minimum(height, width)
image = tf.image.crop_to_bounding_box(
data["image"],
(height - crop_size) // 2,
(width - crop_size) // 2,
crop_size,
crop_size,
)
# resize and clip
# for image downsampling it is important to turn on antialiasing
image = tf.image.resize(image, size=[image_size, image_size], antialias=True)
return ops.clip(image / 255.0, 0.0, 1.0)
def prepare_dataset(split):
# the validation dataset is shuffled as well, because data order matters
# for the KID estimation
return (
tfds.load(dataset_name, split=split, shuffle_files=True)
.map(preprocess_image, num_parallel_calls=tf.data.AUTOTUNE)
.cache()
.repeat(dataset_repetitions)
.shuffle(10 * batch_size)
.batch(batch_size, drop_remainder=True)
.prefetch(buffer_size=tf.data.AUTOTUNE)
)
# load dataset
train_dataset = prepare_dataset("train[:80%]+validation[:80%]+test[:80%]")
val_dataset = prepare_dataset("train[80%:]+validation[80%:]+test[80%:]")
核起始距离 (KID)是一种图像质量指标,它被提议作为流行的Frechet 起始距离 (FID)的替代品。我更喜欢 KID 而不是 FID,因为它实现起来更简单,可以按批次估计,并且计算量更轻。更多详细信息请参见此处。
在此示例中,图像以起始网络最小可能分辨率(75x75 而不是 299x299)进行评估,并且出于计算效率的考虑,该指标仅在验证集上进行衡量。出于同样的原因,我们还将评估时的采样步骤数限制为 5。
由于数据集相对较小,我们每个 epoch 会多次遍历训练和验证拆分,因为 KID 估计有噪声且计算密集,因此我们希望仅在多次迭代后进行评估,但要进行多次迭代。
@keras.saving.register_keras_serializable()
class KID(keras.metrics.Metric):
def __init__(self, name, **kwargs):
super().__init__(name=name, **kwargs)
# KID is estimated per batch and is averaged across batches
self.kid_tracker = keras.metrics.Mean(name="kid_tracker")
# a pretrained InceptionV3 is used without its classification layer
# transform the pixel values to the 0-255 range, then use the same
# preprocessing as during pretraining
self.encoder = keras.Sequential(
[
keras.Input(shape=(image_size, image_size, 3)),
layers.Rescaling(255.0),
layers.Resizing(height=kid_image_size, width=kid_image_size),
layers.Lambda(keras.applications.inception_v3.preprocess_input),
keras.applications.InceptionV3(
include_top=False,
input_shape=(kid_image_size, kid_image_size, 3),
weights="imagenet",
),
layers.GlobalAveragePooling2D(),
],
name="inception_encoder",
)
def polynomial_kernel(self, features_1, features_2):
feature_dimensions = ops.cast(ops.shape(features_1)[1], dtype="float32")
return (
features_1 @ ops.transpose(features_2) / feature_dimensions + 1.0
) ** 3.0
def update_state(self, real_images, generated_images, sample_weight=None):
real_features = self.encoder(real_images, training=False)
generated_features = self.encoder(generated_images, training=False)
# compute polynomial kernels using the two sets of features
kernel_real = self.polynomial_kernel(real_features, real_features)
kernel_generated = self.polynomial_kernel(
generated_features, generated_features
)
kernel_cross = self.polynomial_kernel(real_features, generated_features)
# estimate the squared maximum mean discrepancy using the average kernel values
batch_size = real_features.shape[0]
batch_size_f = ops.cast(batch_size, dtype="float32")
mean_kernel_real = ops.sum(kernel_real * (1.0 - ops.eye(batch_size))) / (
batch_size_f * (batch_size_f - 1.0)
)
mean_kernel_generated = ops.sum(
kernel_generated * (1.0 - ops.eye(batch_size))
) / (batch_size_f * (batch_size_f - 1.0))
mean_kernel_cross = ops.mean(kernel_cross)
kid = mean_kernel_real + mean_kernel_generated - 2.0 * mean_kernel_cross
# update the average KID estimate
self.kid_tracker.update_state(kid)
def result(self):
return self.kid_tracker.result()
def reset_state(self):
self.kid_tracker.reset_state()
在这里,我们指定将用于去噪的神经网络的架构。我们构建了一个输入和输出维度相同的U-Net。U-Net 是一种流行的语义分割架构,其主要思想是它逐步下采样然后上采样其输入图像,并在具有相同分辨率的层之间添加跳跃连接。这些有助于梯度流动,并避免引入表示瓶颈,这与通常的自编码器不同。基于此,可以将扩散模型视为没有瓶颈的去噪自编码器。
网络接收两个输入,即噪声图像和噪声分量的方差。由于在不同噪声级别下去噪信号需要不同的操作,因此需要后者。我们使用正弦嵌入转换噪声方差,类似于transformer和NeRF中使用的位置编码。这有助于网络对噪声水平高度敏感,这对于良好的性能至关重要。我们使用Lambda 层实现正弦嵌入。
其他一些考虑事项
@keras.saving.register_keras_serializable()
def sinusoidal_embedding(x):
embedding_min_frequency = 1.0
frequencies = ops.exp(
ops.linspace(
ops.log(embedding_min_frequency),
ops.log(embedding_max_frequency),
embedding_dims // 2,
)
)
angular_speeds = ops.cast(2.0 * math.pi * frequencies, "float32")
embeddings = ops.concatenate(
[ops.sin(angular_speeds * x), ops.cos(angular_speeds * x)], axis=3
)
return embeddings
def ResidualBlock(width):
def apply(x):
input_width = x.shape[3]
if input_width == width:
residual = x
else:
residual = layers.Conv2D(width, kernel_size=1)(x)
x = layers.BatchNormalization(center=False, scale=False)(x)
x = layers.Conv2D(width, kernel_size=3, padding="same", activation="swish")(x)
x = layers.Conv2D(width, kernel_size=3, padding="same")(x)
x = layers.Add()([x, residual])
return x
return apply
def DownBlock(width, block_depth):
def apply(x):
x, skips = x
for _ in range(block_depth):
x = ResidualBlock(width)(x)
skips.append(x)
x = layers.AveragePooling2D(pool_size=2)(x)
return x
return apply
def UpBlock(width, block_depth):
def apply(x):
x, skips = x
x = layers.UpSampling2D(size=2, interpolation="bilinear")(x)
for _ in range(block_depth):
x = layers.Concatenate()([x, skips.pop()])
x = ResidualBlock(width)(x)
return x
return apply
def get_network(image_size, widths, block_depth):
noisy_images = keras.Input(shape=(image_size, image_size, 3))
noise_variances = keras.Input(shape=(1, 1, 1))
e = layers.Lambda(sinusoidal_embedding, output_shape=(1, 1, 32))(noise_variances)
e = layers.UpSampling2D(size=image_size, interpolation="nearest")(e)
x = layers.Conv2D(widths[0], kernel_size=1)(noisy_images)
x = layers.Concatenate()([x, e])
skips = []
for width in widths[:-1]:
x = DownBlock(width, block_depth)([x, skips])
for _ in range(block_depth):
x = ResidualBlock(widths[-1])(x)
for width in reversed(widths[:-1]):
x = UpBlock(width, block_depth)([x, skips])
x = layers.Conv2D(3, kernel_size=1, kernel_initializer="zeros")(x)
return keras.Model([noisy_images, noise_variances], x, name="residual_unet")
这展示了函数式 API 的强大功能。请注意,我们如何用 80 行代码构建了一个相对复杂的 U-Net,具有跳跃连接、残差块、多个输入和正弦嵌入!
假设扩散过程从时间 = 0 开始,到时间 = 1 结束。此变量将称为扩散时间,可以是离散的(在扩散模型中常见)或连续的(在基于分数的模型中常见)。我选择后者,以便可以在推理时更改采样步骤的数量。
我们需要一个函数来告诉我们,在扩散过程的每个点上,与实际扩散时间相对应的噪声图像的噪声水平和信号水平。这将称为扩散时间表(请参见 diffusion_schedule()
)。
此时间表输出两个量:noise_rate
和 signal_rate
(分别对应于 DDIM 论文中的 sqrt(1 - alpha) 和 sqrt(alpha))。我们通过按其相应的速率对随机噪声和训练图像进行加权并将它们相加来生成噪声图像。
由于(标准正态)随机噪声和(归一化的)图像都具有零均值和单位方差,因此噪声率和信号率可以解释为它们在带噪图像中分量的标准差,而它们速率的平方可以解释为它们的方差(或在信号处理意义上的功率)。这些速率将始终被设置为其平方和为 1,这意味着带噪图像将始终具有单位方差,就像其未缩放的分量一样。
我们将使用 余弦调度(第 3.2 节)的简化连续版本,该版本在文献中非常常用。此调度是对称的,在扩散过程的开始和结束时速度较慢,并且还具有很好的几何解释,使用了 单位圆的三角性质
去噪扩散模型的训练过程(参见 train_step()
和 denoise()
)如下:我们均匀地采样随机扩散时间,并以对应于扩散时间的速率将训练图像与随机高斯噪声混合。然后,我们训练模型将带噪图像分离为其两个分量。
通常,训练神经网络以预测未缩放的噪声分量,然后可以使用信号和噪声率计算预测的图像分量。理论上应该使用逐像素的均方误差,但我建议改用平均绝对误差(类似于 此实现),这会在该数据集上产生更好的结果。
采样时(参见 reverse_diffusion()
),在每一步中,我们都会获取带噪图像的先前估计,并使用我们的网络将其分离为图像和噪声。然后,我们使用下一步的信号和噪声率重新组合这些分量。
尽管在 DDIM 的等式 12 中显示了类似的观点,但我认为以上对采样方程的解释并不广为人知。
此示例仅实现了 DDIM 中的确定性采样过程,该过程对应于论文中的eta = 0。也可以使用随机采样(在这种情况下,该模型成为 去噪扩散概率模型 (DDPM)),其中一部分预测的噪声被相同或更大数量的随机噪声替换(参见等式 16 和下文)。
随机采样可以在不重新训练网络的情况下使用(因为两个模型的训练方式相同),它可以提高样本质量,但另一方面通常需要更多的采样步骤。
@keras.saving.register_keras_serializable()
class DiffusionModel(keras.Model):
def __init__(self, image_size, widths, block_depth):
super().__init__()
self.normalizer = layers.Normalization()
self.network = get_network(image_size, widths, block_depth)
self.ema_network = keras.models.clone_model(self.network)
def compile(self, **kwargs):
super().compile(**kwargs)
self.noise_loss_tracker = keras.metrics.Mean(name="n_loss")
self.image_loss_tracker = keras.metrics.Mean(name="i_loss")
self.kid = KID(name="kid")
@property
def metrics(self):
return [self.noise_loss_tracker, self.image_loss_tracker, self.kid]
def denormalize(self, images):
# convert the pixel values back to 0-1 range
images = self.normalizer.mean + images * self.normalizer.variance**0.5
return ops.clip(images, 0.0, 1.0)
def diffusion_schedule(self, diffusion_times):
# diffusion times -> angles
start_angle = ops.cast(ops.arccos(max_signal_rate), "float32")
end_angle = ops.cast(ops.arccos(min_signal_rate), "float32")
diffusion_angles = start_angle + diffusion_times * (end_angle - start_angle)
# angles -> signal and noise rates
signal_rates = ops.cos(diffusion_angles)
noise_rates = ops.sin(diffusion_angles)
# note that their squared sum is always: sin^2(x) + cos^2(x) = 1
return noise_rates, signal_rates
def denoise(self, noisy_images, noise_rates, signal_rates, training):
# the exponential moving average weights are used at evaluation
if training:
network = self.network
else:
network = self.ema_network
# predict noise component and calculate the image component using it
pred_noises = network([noisy_images, noise_rates**2], training=training)
pred_images = (noisy_images - noise_rates * pred_noises) / signal_rates
return pred_noises, pred_images
def reverse_diffusion(self, initial_noise, diffusion_steps):
# reverse diffusion = sampling
num_images = initial_noise.shape[0]
step_size = 1.0 / diffusion_steps
# important line:
# at the first sampling step, the "noisy image" is pure noise
# but its signal rate is assumed to be nonzero (min_signal_rate)
next_noisy_images = initial_noise
for step in range(diffusion_steps):
noisy_images = next_noisy_images
# separate the current noisy image to its components
diffusion_times = ops.ones((num_images, 1, 1, 1)) - step * step_size
noise_rates, signal_rates = self.diffusion_schedule(diffusion_times)
pred_noises, pred_images = self.denoise(
noisy_images, noise_rates, signal_rates, training=False
)
# network used in eval mode
# remix the predicted components using the next signal and noise rates
next_diffusion_times = diffusion_times - step_size
next_noise_rates, next_signal_rates = self.diffusion_schedule(
next_diffusion_times
)
next_noisy_images = (
next_signal_rates * pred_images + next_noise_rates * pred_noises
)
# this new noisy image will be used in the next step
return pred_images
def generate(self, num_images, diffusion_steps):
# noise -> images -> denormalized images
initial_noise = keras.random.normal(
shape=(num_images, image_size, image_size, 3)
)
generated_images = self.reverse_diffusion(initial_noise, diffusion_steps)
generated_images = self.denormalize(generated_images)
return generated_images
def train_step(self, images):
# normalize images to have standard deviation of 1, like the noises
images = self.normalizer(images, training=True)
noises = keras.random.normal(shape=(batch_size, image_size, image_size, 3))
# sample uniform random diffusion times
diffusion_times = keras.random.uniform(
shape=(batch_size, 1, 1, 1), minval=0.0, maxval=1.0
)
noise_rates, signal_rates = self.diffusion_schedule(diffusion_times)
# mix the images with noises accordingly
noisy_images = signal_rates * images + noise_rates * noises
with tf.GradientTape() as tape:
# train the network to separate noisy images to their components
pred_noises, pred_images = self.denoise(
noisy_images, noise_rates, signal_rates, training=True
)
noise_loss = self.loss(noises, pred_noises) # used for training
image_loss = self.loss(images, pred_images) # only used as metric
gradients = tape.gradient(noise_loss, self.network.trainable_weights)
self.optimizer.apply_gradients(zip(gradients, self.network.trainable_weights))
self.noise_loss_tracker.update_state(noise_loss)
self.image_loss_tracker.update_state(image_loss)
# track the exponential moving averages of weights
for weight, ema_weight in zip(self.network.weights, self.ema_network.weights):
ema_weight.assign(ema * ema_weight + (1 - ema) * weight)
# KID is not measured during the training phase for computational efficiency
return {m.name: m.result() for m in self.metrics[:-1]}
def test_step(self, images):
# normalize images to have standard deviation of 1, like the noises
images = self.normalizer(images, training=False)
noises = keras.random.normal(shape=(batch_size, image_size, image_size, 3))
# sample uniform random diffusion times
diffusion_times = keras.random.uniform(
shape=(batch_size, 1, 1, 1), minval=0.0, maxval=1.0
)
noise_rates, signal_rates = self.diffusion_schedule(diffusion_times)
# mix the images with noises accordingly
noisy_images = signal_rates * images + noise_rates * noises
# use the network to separate noisy images to their components
pred_noises, pred_images = self.denoise(
noisy_images, noise_rates, signal_rates, training=False
)
noise_loss = self.loss(noises, pred_noises)
image_loss = self.loss(images, pred_images)
self.image_loss_tracker.update_state(image_loss)
self.noise_loss_tracker.update_state(noise_loss)
# measure KID between real and generated images
# this is computationally demanding, kid_diffusion_steps has to be small
images = self.denormalize(images)
generated_images = self.generate(
num_images=batch_size, diffusion_steps=kid_diffusion_steps
)
self.kid.update_state(images, generated_images)
return {m.name: m.result() for m in self.metrics}
def plot_images(self, epoch=None, logs=None, num_rows=3, num_cols=6):
# plot random generated images for visual evaluation of generation quality
generated_images = self.generate(
num_images=num_rows * num_cols,
diffusion_steps=plot_diffusion_steps,
)
plt.figure(figsize=(num_cols * 2.0, num_rows * 2.0))
for row in range(num_rows):
for col in range(num_cols):
index = row * num_cols + col
plt.subplot(num_rows, num_cols, index + 1)
plt.imshow(generated_images[index])
plt.axis("off")
plt.tight_layout()
plt.show()
plt.close()
# create and compile the model
model = DiffusionModel(image_size, widths, block_depth)
# below tensorflow 2.9:
# pip install tensorflow_addons
# import tensorflow_addons as tfa
# optimizer=tfa.optimizers.AdamW
model.compile(
optimizer=keras.optimizers.AdamW(
learning_rate=learning_rate, weight_decay=weight_decay
),
loss=keras.losses.mean_absolute_error,
)
# pixelwise mean absolute error is used as loss
# save the best model based on the validation KID metric
checkpoint_path = "checkpoints/diffusion_model.weights.h5"
checkpoint_callback = keras.callbacks.ModelCheckpoint(
filepath=checkpoint_path,
save_weights_only=True,
monitor="val_kid",
mode="min",
save_best_only=True,
)
# calculate mean and variance of training dataset for normalization
model.normalizer.adapt(train_dataset)
# run training and plot generated images periodically
model.fit(
train_dataset,
epochs=num_epochs,
validation_data=val_dataset,
callbacks=[
keras.callbacks.LambdaCallback(on_epoch_end=model.plot_images),
checkpoint_callback,
],
)
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/inception_v3/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5
87910968/87910968 ━━━━━━━━━━━━━━━━━━━━ 0s 0us/step
511/511 ━━━━━━━━━━━━━━━━━━━━ 0s 48ms/step - i_loss: 0.6896 - n_loss: 0.2961
511/511 ━━━━━━━━━━━━━━━━━━━━ 110s 138ms/step - i_loss: 0.6891 - n_loss: 0.2959 - kid: 0.0000e+00 - val_i_loss: 2.5650 - val_kid: 2.0372 - val_n_loss: 0.7914
<keras.src.callbacks.history.History at 0x7f521b149870>
# load the best model and generate images
model.load_weights(checkpoint_path)
model.plot_images()
通过至少运行 50 个 epoch 的训练(在 T4 GPU 上需要 2 个小时,在 A100 GPU 上需要 30 分钟),可以使用此代码示例获得高质量的图像生成。
一批图像在 80 个 epoch 训练过程中的演变(颜色伪影是由于 GIF 压缩造成的)
使用来自相同初始噪声的 1 到 20 个采样步骤生成的图像
初始噪声样本之间的(球面)插值
确定性采样过程(顶部为带噪图像,底部为预测图像,共 40 步)
随机采样过程(顶部为带噪图像,底部为预测图像,共 80 步)
在准备此代码示例期间,我使用此存储库进行了大量实验。在本节中,我按主观重要性顺序列出经验教训和我的建议。
有关 GAN 的类似列表,请查看此 Keras 教程。
如果您想更深入地研究该主题,我建议您查看此存储库,我创建该存储库是为了准备此代码示例,它以类似的方式实现了更广泛的功能,例如