Keras 3 API 文档 / 层 API / 循环层 / 基础 RNN 层

基础 RNN 层

[源代码]

RNN

keras.layers.RNN(
    cell,
    return_sequences=False,
    return_state=False,
    go_backwards=False,
    stateful=False,
    unroll=False,
    zero_output_for_mask=False,
    **kwargs
)

循环层的基类。

参数

  • cell: RNN 单元实例或 RNN 单元实例列表。RNN 单元是一个具有以下方法的类:
    • 一个 call(input_at_t, states_at_t) 方法,返回 (output_at_t, states_at_t_plus_1)。单元的 call 方法还可以接收可选参数 constants,请参见下面的“关于传递外部常量”部分。
    • 一个 state_size 属性。它可以是一个整数(单个状态),在这种情况下,它是循环状态的大小。它也可以是一个整数列表/元组(每个状态一个大小)。
    • 一个 output_size 属性,一个整数。
    • 一个 get_initial_state(batch_size=None) 方法,用于创建旨在作为初始状态馈送到 call() 的张量,如果用户没有通过其他方式指定任何初始状态。返回的初始状态应具有形状 (batch_size, cell.state_size)。单元可以选择创建充满零或其他值的张量,具体取决于单元的实现。inputs 是 RNN 层的输入张量,形状为 (batch_size, timesteps, features)。如果单元未实现此方法,则 RNN 层将创建一个形状为 (batch_size, cell.state_size) 的填充零的张量。如果 cell 是 RNN 单元实例列表,则这些单元将在 RNN 中彼此堆叠,从而形成一个高效的堆叠 RNN。
  • return_sequences: 布尔值(默认值为 False)。是否返回输出序列中的最后一个输出,或返回完整的序列。
  • return_state: 布尔值(默认值为 False)。是否除了输出之外还返回最后一个状态。
  • go_backwards: 布尔值(默认值为 False)。如果为 True,则反向处理输入序列并返回反转后的序列。
  • stateful: 布尔值(默认值为 False)。如果为 True,则批次中索引为 i 的每个样本的最后一个状态将用作后续批次中索引为 i 的样本的初始状态。
  • unroll: 布尔值(默认值为 False)。如果为 True,则网络将被展开,否则将使用符号循环。展开可以加速 RNN,尽管它往往会更占用内存。展开仅适用于短序列。
  • zero_output_for_mask: 布尔值(默认值为 False)。输出是否应为屏蔽时间步使用零。请注意,此字段仅在 return_sequencesTrue 且提供了 mask 时使用。如果您希望重用 RNN 的原始输出序列而不受屏蔽时间步的影响(例如,合并双向 RNN),则它会很有用。

调用参数

  • sequences: 形状为 (batch_size, timesteps, features) 的 3D 张量。
  • initial_state: 传递给单元第一次调用的初始状态张量列表。
  • mask: 形状为 [batch_size, timesteps] 的二进制张量,指示是否应该屏蔽给定的时间步。单个 True 条目表示应使用相应的时间步,而 False 条目表示应忽略相应的时间步。
  • training: Python 布尔值,指示层应该处于训练模式还是推理模式。调用单元时会将此参数传递给单元。这用于使用 dropout 的单元。

输出形状

  • 如果 return_state:张量列表。第一个张量是输出。其余张量是最后一个状态,每个状态的形状为 (batch_size, state_size),其中 state_size 可以是高维张量形状。
  • 如果 return_sequences:形状为 (batch_size, timesteps, output_size) 的 3D 张量。

掩码

此层支持对具有可变时间步数的输入数据进行掩码。要将掩码引入您的数据,请使用具有 mask_zero 参数设置为 Truekeras.layers.Embedding 层。

关于在 RNN 中使用状态性的说明

您可以将 RNN 层设置为“有状态”,这意味着为一个批次中的样本计算的状态将被重复用作下一个批次中样本的初始状态。这假设不同连续批次中的样本之间存在一对一映射。

要启用状态性

  • 在层构造函数中指定 stateful=True
  • 为您的模型指定一个固定的批次大小,方法是将 batch_size=... 传递给模型的 Input 层。请记住,在调用 fit() 时也要指定相同的 batch_size=...,否则使用类似生成器的的数据源,例如 keras.utils.PyDatasettf.data.Dataset
  • 在调用 fit() 时指定 shuffle=False,因为您的批次预计是按时间顺序排列的。

要重置模型的状态,请在特定层或整个模型上调用 .reset_state()

关于指定 RNN 初始状态的说明

您可以通过使用关键字参数 initial_state 调用 RNN 层来象征性地指定 RNN 层的初始状态。initial_state 的值应为表示 RNN 层初始状态的张量或张量列表。

您可以通过使用关键字参数 states 调用 reset_state() 来以数值方式指定 RNN 层的初始状态。states 的值应为表示 RNN 层初始状态的 NumPy 数组或 NumPy 数组列表。

示例

from keras.layers import RNN
from keras import ops

# First, let's define a RNN Cell, as a layer subclass.
class MinimalRNNCell(keras.Layer):

    def __init__(self, units, **kwargs):
        super().__init__(**kwargs)
        self.units = units
        self.state_size = units

    def build(self, input_shape):
        self.kernel = self.add_weight(shape=(input_shape[-1], self.units),
                                      initializer='uniform',
                                      name='kernel')
        self.recurrent_kernel = self.add_weight(
            shape=(self.units, self.units),
            initializer='uniform',
            name='recurrent_kernel')
        self.built = True

    def call(self, inputs, states):
        prev_output = states[0]
        h = ops.matmul(inputs, self.kernel)
        output = h + ops.matmul(prev_output, self.recurrent_kernel)
        return output, [output]

# Let's use this cell in a RNN layer:

cell = MinimalRNNCell(32)
x = keras.Input((None, 5))
layer = RNN(cell)
y = layer(x)

# Here's how to use the cell to build a stacked RNN:

cells = [MinimalRNNCell(32), MinimalRNNCell(64)]
x = keras.Input((None, 5))
layer = RNN(cells)
y = layer(x)