MaxPooling3D 类keras.layers.MaxPooling3D(
pool_size=(2, 2, 2),
strides=None,
padding="valid",
data_format=None,
name=None,
**kwargs
)
3D 数据(空间或时空)的最大池化操作。
通过对输入数据的每个通道,在由 pool_size 定义的窗口(大小)内取最大值,来下采样输入数据的空间维度(深度、高度和宽度)。窗口在每个维度上由 strides 进行移动。
参数
pool_size。如果只指定一个整数,则所有维度都将使用相同的步幅大小。"valid" 或 "same"(不区分大小写)。"valid" 表示不进行填充。"same" 会在输入序列的左/右或上/下均匀填充,以便输出的高度/宽度维度与输入相同。"channels_last" 或 "channels_first"。输入数据的维度顺序。"channels_last" 对应输入形状为 (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels),而 "channels_first" 对应输入形状为 (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3)。默认为 Keras 配置文件 ~/.keras/keras.json 中的 image_data_format 值。如果从未设置,则默认为 "channels_last"。输入形状
data_format="channels_last": 形状为 (batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels) 的 5D 张量data_format="channels_first": 形状为 (batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3) 的 5D 张量输出形状
data_format="channels_last":5D 张量,形状为:(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)data_format="channels_first":5D 张量,形状为:(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)示例
depth = 30
height = 30
width = 30
channels = 3
inputs = keras.layers.Input(shape=(depth, height, width, channels))
layer = keras.layers.MaxPooling3D(pool_size=3)
outputs = layer(inputs) # Shape: (batch_size, 10, 10, 10, 3)