GlobalMaxPooling3D 类keras.layers.GlobalMaxPooling3D(data_format=None, keepdims=False, **kwargs)
用于 3D 数据的全局最大池化操作。
参数
"channels_last" 或 "channels_first"。输入中维度的顺序。"channels_last" 对应形状为 (batch, spatial_dim1, spatial_dim2, spatial_dim3, channels) 的输入,而 "channels_first" 对应形状为 (batch, channels, spatial_dim1, spatial_dim2, spatial_dim3) 的输入。它默认为 Keras 配置文件 ~/.keras/keras.json 中 image_data_format 的值。如果你从未设置过,则默认为 "channels_last"。keepdims 为 False(默认),则张量的秩会针对空间维度减少。如果 keepdims 为 True,则空间维度会以长度 1 保留。行为与 tf.reduce_mean 或 np.mean 相同。输入形状
data_format='channels_last':5D 张量,形状为:(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)data_format='channels_first':5D 张量,形状为:(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)输出形状
keepdims=False:形状为 (batch_size, channels) 的 2D 张量。keepdims=True:- 如果 data_format="channels_last":5D 张量,形状为 (batch_size, 1, 1, 1, channels) - 如果 data_format="channels_first":5D 张量,形状为 (batch_size, channels, 1, 1, 1)示例
>>> x = np.random.rand(2, 4, 5, 4, 3)
>>> y = keras.layers.GlobalMaxPooling3D()(x)
>>> y.shape
(2, 3)