PaliGemmaTokenizer
类keras_nlp.tokenizers.PaliGemmaTokenizer(proto, **kwargs)
基于 SentencePiece 的 PaliGemma 分词器层。
此分词器类将原始字符串分词为整数序列,并且基于 keras_nlp.tokenizers.SentencePieceTokenizer
。与底层分词器不同,它将检查 PaliGemma 模型所需的所有特殊标记,并提供 from_preset()
方法来自动下载与 PaliGemma 预设匹配的词汇表。
如果输入是字符串批次(秩 > 0),则层将输出一个 tf.RaggedTensor
,其中输出的最后维度是参差不齐的。
如果输入是标量字符串(秩 == 0),则层将输出一个具有静态形状 [None]
的密集 tf.Tensor
。
参数
string
路径,或者包含序列化 SentencePiece proto 的 bytes
对象。有关格式的更多详细信息,请参阅 SentencePiece 存储库。示例
# Unbatched input.
tokenizer = keras_nlp.models.PaliGemmaTokenizer.from_preset(
"pali_gemma_3b_224"
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
# Custom vocabulary.
bytes_io = io.BytesIO()
ds = tf.data.Dataset.from_tensor_slices(["The quick brown fox jumped."])
sentencepiece.SentencePieceTrainer.train(
sentence_iterator=ds.as_numpy_iterator(),
model_writer=bytes_io,
vocab_size=8,
model_type="WORD",
pad_id=0,
bos_id=1,
eos_id=2,
unk_id=3,
pad_piece="<pad>",
bos_piece="<bos>",
eos_piece="<eos>",
unk_piece="<unk>",
)
tokenizer = keras_nlp.models.PaliGemmaTokenizer(
proto=bytes_io.getvalue(),
)
tokenizer("The quick brown fox jumped.")
from_preset
方法PaliGemmaTokenizer.from_preset(preset, **kwargs)
从模型预设实例化 keras_nlp.models.Tokenizer
。
预设是用于保存和加载预训练模型的配置、权重和其他文件资产的目录。preset
可以作为以下之一传递:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Tokenizer
子类,您都可以运行 cls.presets.keys()
列出该类上可用的所有内置预设。
此构造函数可以通过两种方式之一调用。从基类调用,例如 keras_nlp.models.Tokenizer.from_preset()
,或从模型类调用,例如 keras_nlp.models.GemmaTokenizer.from_preset()
。如果从基类调用,返回对象的子类将从预设目录中的配置推断出来。
参数
True
,则权重将加载到模型架构中。如果为 False
,则权重将被随机初始化。示例
# Load a preset tokenizer.
tokenizer = keras_nlp.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
预设名称 | 参数 | 描述 |
---|---|---|
pali_gemma_3b_mix_224 | 2.92B | 图像大小 224,混合微调,文本序列长度为 256 |
pali_gemma_3b_mix_448 | 2.92B | 图像大小 448,混合微调,文本序列长度为 512 |
pali_gemma_3b_224 | 2.92B | 图像大小 224,预训练,文本序列长度为 128 |
pali_gemma_3b_448 | 2.92B | 图像大小 448,预训练,文本序列长度为 512 |
pali_gemma_3b_896 | 2.93B | 图像大小 896,预训练,文本序列长度为 512 |