FNetTextClassifierPreprocessor
类keras_nlp.models.FNetTextClassifierPreprocessor(
tokenizer, sequence_length=512, truncate="round_robin", **kwargs
)
一个用于 FNet 的预处理层,用于分词和打包输入。
此预处理层将执行三件事
tokenizer
对任意数量的输入片段进行分词。keras_nlp.layers.MultiSegmentPacker
将输入打包在一起,并使用适当的 "[CLS]"
、"[SEP]"
和 "<pad>"
标记。"token_ids"
和 "segment_ids"
键,可以直接传递给 keras_nlp.models.FNetBackbone
。此层可以直接与 tf.data.Dataset.map
一起使用,以预处理 keras.Model.fit
使用的 (x, y, sample_weight)
格式的字符串数据。
参数
keras_nlp.models.FNetTokenizer
实例。sequence_length
的算法。该值可以是 round_robin
或 waterfall
"round_robin"
:可用的空间以循环的方式一次分配一个标记给仍然需要一些空间的输入,直到达到限制。"waterfall"
:预算的分配使用“瀑布”算法完成,该算法以从左到右的方式分配配额,并填充分配桶,直到我们用完预算。它支持任意数量的片段。调用参数
示例
直接调用 from_preset()。
preprocessor = keras_nlp.models.TextClassifierPreprocessor.from_preset(
"f_net_base_en"
)
# Tokenize and pack a single sentence.
preprocessor("The quick brown fox jumped.")
# Tokenize and a batch of single sentences.
preprocessor(["The quick brown fox jumped.", "Call me Ishmael."])
# Preprocess a batch of sentence pairs.
# When handling multiple sequences, always convert to tensors first!
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
preprocessor((first, second))
使用 tf.data.Dataset
进行映射。
preprocessor = keras_nlp.models.TextClassifierPreprocessor.from_preset(
"f_net_base_en"
)
first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."])
second = tf.constant(["The fox tripped.", "Oh look, a whale."])
label = tf.constant([1, 1])
# Map labeled single sentences.
ds = tf.data.Dataset.from_tensor_slices((first, label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled single sentences.
ds = tf.data.Dataset.from_tensor_slices(first)
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map labeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices(((first, second), label))
ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE)
# Map unlabeled sentence pairs.
ds = tf.data.Dataset.from_tensor_slices((first, second))
# Watch out for tf.data's default unpacking of tuples here!
# Best to invoke the `preprocessor` directly in this case.
ds = ds.map(
lambda first, second: preprocessor(x=(first, second)),
num_parallel_calls=tf.data.AUTOTUNE,
)
from_preset
方法FNetTextClassifierPreprocessor.from_preset(preset, **kwargs)
从模型预设实例化一个 keras_nlp.models.Preprocessor
。
预设是用于保存和加载预训练模型的配置、权重和其他文件资产的目录。preset
可以作为以下之一传递:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Preprocessor
子类,您可以运行 cls.presets.keys()
以列出在该类上可用的所有内置预设。
由于对于给定模型通常有多个预处理类,因此此方法应在特定子类上调用,例如 keras_nlp.models.BertTextClassifierPreprocessor.from_preset()
。
参数
示例
# Load a preprocessor for Gemma generation.
preprocessor = keras_nlp.models.GemmaCausalLMPreprocessor.from_preset(
"gemma_2b_en",
)
# Load a preprocessor for Bert classification.
preprocessor = keras_nlp.models.BertTextClassifierPreprocessor.from_preset(
"bert_base_en",
)
预设名称 | 参数 | 描述 |
---|---|---|
f_net_base_en | 82.86M | 12 层 FNet 模型,其中保留大小写。在 C4 数据集上训练。 |
f_net_large_en | 236.95M | 24 层 FNet 模型,其中保留大小写。在 C4 数据集上训练。 |
tokenizer
属性keras_nlp.models.FNetTextClassifierPreprocessor.tokenizer
用于对字符串进行分词的分词器。