BartSeq2SeqLM
类keras_nlp.models.BartSeq2SeqLM(backbone, preprocessor=None, **kwargs)
用于序列到序列语言建模的端到端 BART 模型。
序列到序列语言模型 (LM) 是一种编码器-解码器模型,用于条件文本生成。编码器接收“上下文”文本(输入到编码器),解码器根据编码器输入和之前的标记预测下一个标记。您可以微调 BartSeq2SeqLM
以生成任何序列到序列任务(例如,翻译或摘要)的文本。
此模型具有一个 generate()
方法,该方法根据编码器输入和解码器的可选提示生成文本。使用的生成策略由传递给 compile()
的附加 sampler
参数控制。您可以使用不同的 keras_nlp.samplers
对象重新编译模型以控制生成。默认情况下,将使用 "top_k"
采样。
此模型可以选择配置一个 preprocessor
层,在这种情况下,它将在 fit()
、predict()
、evaluate()
和 generate()
期间自动对字符串输入进行预处理。使用 from_preset()
创建模型时,默认情况下会执行此操作。
免责声明:预训练模型按“现状”提供,不提供任何形式的保证或条件。基础模型由第三方提供,并受单独许可的约束,可在 此处 获取。
参数
keras_nlp.models.BartBackbone
实例。keras_nlp.models.BartSeq2SeqLMPreprocessor
或 None
。如果为 None
,则此模型不会应用预处理,并且应在调用模型之前预处理输入。示例
使用 generate()
进行文本生成,给定输入上下文。
bart_lm = keras_nlp.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.generate("The quick brown fox", max_length=30)
# Generate with batched inputs.
bart_lm.generate(["The quick brown fox", "The whale"], max_length=30)
使用自定义采样器编译 generate()
函数。
bart_lm = keras_nlp.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.compile(sampler="greedy")
bart_lm.generate("The quick brown fox", max_length=30)
使用 generate()
以及编码器输入和不完整的解码器输入(提示)。
bart_lm = keras_nlp.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.generate(
{
"encoder_text": "The quick brown fox",
"decoder_text": "The fast"
}
)
在不进行预处理的情况下使用 generate()
。
# Preprocessed inputs, with encoder inputs corresponding to
# "The quick brown fox", and the decoder inputs to "The fast". Use
# `"padding_mask"` to indicate values that should not be overridden.
prompt = {
"encoder_token_ids": np.array([[0, 133, 2119, 6219, 23602, 2, 1, 1]]),
"encoder_padding_mask": np.array(
[[True, True, True, True, True, True, False, False]]
),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2, 1, 1]]),
"decoder_padding_mask": np.array([[True, True, True, True, False, False]])
}
bart_lm = keras_nlp.models.BartSeq2SeqLM.from_preset(
"bart_base_en",
preprocessor=None,
)
bart_lm.generate(prompt)
在一个批次上调用 fit()
。
features = {
"encoder_text": ["The quick brown fox jumped.", "I forgot my homework."],
"decoder_text": ["The fast hazel fox leapt.", "I forgot my assignment."]
}
bart_lm = keras_nlp.models.BartSeq2SeqLM.from_preset("bart_base_en")
bart_lm.fit(x=features, batch_size=2)
在不进行预处理的情况下调用 fit()
。
x = {
"encoder_token_ids": np.array([[0, 133, 2119, 2, 1]] * 2),
"encoder_padding_mask": np.array([[1, 1, 1, 1, 0]] * 2),
"decoder_token_ids": np.array([[2, 0, 133, 1769, 2]] * 2),
"decoder_padding_mask": np.array([[1, 1, 1, 1, 1]] * 2),
}
y = np.array([[0, 133, 1769, 2, 1]] * 2)
sw = np.array([[1, 1, 1, 1, 0]] * 2)
bart_lm = keras_nlp.models.BartSeq2SeqLM.from_preset(
"bart_base_en",
preprocessor=None,
)
bart_lm.fit(x=x, y=y, sample_weight=sw, batch_size=2)
自定义骨干网络和词汇表。
features = {
"encoder_text": [" afternoon sun"],
"decoder_text": ["noon sun"],
}
vocab = {
"<s>": 0,
"<pad>": 1,
"</s>": 2,
"Ġafter": 5,
"noon": 6,
"Ġsun": 7,
}
merges = ["Ġ a", "Ġ s", "Ġ n", "e r", "n o", "o n", "Ġs u", "Ġa f", "no on"]
merges += ["Ġsu n", "Ġaf t", "Ġaft er"]
tokenizer = keras_nlp.models.BartTokenizer(
vocabulary=vocab,
merges=merges,
)
preprocessor = keras_nlp.models.BartSeq2SeqLMPreprocessor(
tokenizer=tokenizer,
encoder_sequence_length=128,
decoder_sequence_length=128,
)
backbone = keras_nlp.models.BartBackbone(
vocabulary_size=50265,
num_layers=6,
num_heads=12,
hidden_dim=768,
intermediate_dim=3072,
max_sequence_length=128,
)
bart_lm = keras_nlp.models.BartSeq2SeqLM(
backbone=backbone,
preprocessor=preprocessor,
)
bart_lm.fit(x=features, batch_size=2)
from_preset
方法BartSeq2SeqLM.from_preset(preset, load_weights=True, **kwargs)
从模型预设实例化一个 keras_nlp.models.Task
。
预设是用于保存和加载预训练模型的配置、权重和其他文件资产的目录。preset
可以作为以下之一传递:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Task
子类,您可以运行 cls.presets.keys()
以列出该类上所有可用的内置预设。
此构造函数可以通过两种方式之一调用。从任务特定的基类(如 keras_nlp.models.CausalLM.from_preset()
)或从模型类(如 keras_nlp.models.BertTextClassifier.from_preset()
)调用。如果从基类调用,则返回对象的子类将从预设目录中的配置推断得出。
参数
True
,则保存的权重将加载到模型架构中。如果为 False
,则所有权重将随机初始化。示例
# Load a Gemma generative task.
causal_lm = keras_nlp.models.CausalLM.from_preset(
"gemma_2b_en",
)
# Load a Bert classification task.
model = keras_nlp.models.TextClassifier.from_preset(
"bert_base_en",
num_classes=2,
)
预设名称 | 参数 | 描述 |
---|---|---|
bart_base_en | 139.42M | 6 层 BART 模型,保留大小写。在 BookCorpus、英文维基百科和 CommonCrawl 上训练。 |
bart_large_en | 406.29M | 12 层 BART 模型,保留大小写。在 BookCorpus、英文维基百科和 CommonCrawl 上训练。 |
bart_large_en_cnn | 406.29M | 在 CNN+DM 摘要数据集上微调的 bart_large_en 骨干模型。 |
generate
方法BartSeq2SeqLM.generate(inputs, max_length=None, stop_token_ids="auto")
给定提示 inputs
生成文本。
此方法根据给定的 inputs
生成文本。用于生成的采样方法可以通过 compile()
方法设置。
如果 inputs
是一个 tf.data.Dataset
,则输出将“逐批”生成并连接。否则,所有输入都将作为单个批次处理。
如果将 preprocessor
附加到模型,则 inputs
将在 generate()
函数内部进行预处理,并且应与 preprocessor
层期望的结构匹配(通常是原始字符串)。如果未附加 preprocessor
,则输入应与 backbone
期望的结构匹配。有关每个演示,请参阅上面的示例用法。
参数
tf.data.Dataset
。如果将 preprocessor
附加到模型,则 inputs
应与 preprocessor
层期望的结构匹配。如果未附加 preprocessor
,则 inputs
应与 backbone
模型期望的结构匹配。preprocessor
的最大配置 sequence_length
。如果 preprocessor
为 None
,则 inputs
应填充到所需的最大长度,并且将忽略此参数。None
、“auto”或标记 ID 元组。默认为“auto”,它使用 preprocessor.tokenizer.end_token_id
。未指定处理器将产生错误。None 在生成 max_length
个标记后停止生成。您还可以指定模型应停止的标记 ID 列表。请注意,标记序列将分别解释为停止标记,不支持多标记停止序列。backbone
属性keras_nlp.models.BartSeq2SeqLM.backbone
具有核心架构的 keras_nlp.models.Backbone
模型。
preprocessor
属性keras_nlp.models.BartSeq2SeqLM.preprocessor
用于预处理输入的 keras_nlp.models.Preprocessor
层。