作者: Fabien Hertschuh, Abheesht Sharma
创建日期 2025/04/28
最后修改日期 2025/04/28
描述: 使用多个堆叠层构建深度召回模型。
使用 Keras 构建推荐模型的巨大优势之一在于可以自由构建丰富、灵活的特征表示。
这样做的第一步是准备特征,因为原始特征通常无法立即在模型中使用。
例如: - 用户和物品 ID 可能是字符串(标题、用户名)或大型非连续整数(数据库 ID)。- 物品描述可能是原始文本。- 交互时间戳可能是原始 Unix 时间戳。
需要对这些特征进行适当的转换才能用于构建模型:- 用户和物品 ID 必须转换为嵌入向量,这是在训练过程中调整的高维数值表示,有助于模型更好地预测其目标。- 原始文本需要进行标记化(分割成更小的部分,例如单个词)并转换为嵌入。- 数值特征需要进行归一化,使其值位于围绕 0 的小区间内。
幸运的是,Keras 的 FeatureSpace
工具使这一预处理过程变得简单。
在本教程中,我们将把多个特征集成到我们的模型中。这些特征将来自对 MovieLens 数据集的预处理。
在基本召回教程中,模型仅包含一个嵌入层。在本教程中,我们为模型添加更多全连接层以增加其表达能力。
通常,深度模型比浅层模型能够学习更复杂的模式。例如,我们的用户模型集成了用户 ID 和年龄、性别、职业等用户特征。浅层模型(例如,单个嵌入层)可能只能学习这些特征与电影之间最简单的关系:特定用户通常更喜欢恐怖片而不是喜剧片。要捕获更复杂的关系,例如用户偏好随年龄变化,我们可能需要一个具有多个堆叠全连接层的深度模型。
当然,复杂的模型也有其缺点。首先是计算成本,因为大型模型需要更多内存和更多计算来进行训练和推理。其次是需要更多数据。通常,需要更多训练数据才能利用深度模型的优势。参数越多,深度模型可能会过拟合,甚至只是记住训练样本,而不是学习可以泛化的函数。最后,训练深度模型可能更难,并且在选择正则化和学习率等设置时需要更加小心。
为真实的推荐系统寻找一个好的架构是一门复杂的艺术,需要良好的直觉和仔细的超参数调优。例如,模型的深度和宽度、激活函数、学习率和优化器等因素可以显著改变模型的性能。建模选择的复杂性还在于,好的离线评估指标可能与好的在线性能不符,并且优化目标的选择通常比模型本身的选择更重要。
然而,构建和微调大型模型所付出的努力往往会得到回报。在本教程中,我们将演示如何构建一个深度召回模型。我们将通过逐步构建更复杂的模型来观察这如何影响模型性能。
!pip install -q keras-rs
import os
os.environ["KERAS_BACKEND"] = "jax" # `"tensorflow"`/`"torch"`
import keras
import matplotlib.pyplot as plt
import tensorflow as tf # Needed for the dataset
import tensorflow_datasets as tfds
import keras_rs
我们首先来看看 MovieLens 数据集中有哪些特征可以使用。
# Ratings data with user and movie data.
ratings = tfds.load("movielens/100k-ratings", split="train")
# Features of all the available movies.
movies = tfds.load("movielens/100k-movies", split="train")
评分数据集返回一个字典,包含电影 ID、用户 ID、分配的评分、时间戳、电影信息和用户信息。
for data in ratings.take(1).as_numpy_iterator():
print(str(data).replace(", '", ",\n '"))
{'bucketized_user_age': np.float32(45.0),
'movie_genres': array([7]),
'movie_id': b'357',
'movie_title': b"One Flew Over the Cuckoo's Nest (1975)",
'raw_user_age': np.float32(46.0),
'timestamp': np.int64(879024327),
'user_gender': np.True_,
'user_id': b'138',
'user_occupation_label': np.int64(4),
'user_occupation_text': b'doctor',
'user_rating': np.float32(4.0),
'user_zip_code': b'53211'}
在 MovieLens 数据集中,用户 ID 是从 1 开始且没有间隙的整数(表示为字符串)。通常,您需要创建一个查找表将用户 ID 映射到从 0 到 N-1 的整数。但为简化起见,我们将直接在模型中使用用户 ID 作为索引,特别是从用户嵌入表中查找用户嵌入。因此,我们需要知道用户的数量。
USERS_COUNT = (
ratings.map(lambda x: tf.strings.to_number(x["user_id"], out_type=tf.int32))
.reduce(tf.constant(0, tf.int32), tf.maximum)
.numpy()
)
电影数据集包含电影 ID、电影标题及其所属类型。请注意,电影类型是使用整数标签编码的。
for data in movies.take(1).as_numpy_iterator():
print(str(data).replace(", '", ",\n '"))
{'movie_genres': array([4]),
'movie_id': b'1681',
'movie_title': b'You So Crazy (1994)'}
在 MovieLens 数据集中,电影 ID 是从 1 开始且没有间隙的整数(表示为字符串)。通常,您需要创建一个查找表将电影 ID 映射到从 0 到 N-1 的整数。但为简化起见,我们将直接在模型中使用电影 ID 作为索引,特别是从电影嵌入表中查找电影嵌入。因此,我们需要知道电影的数量。
MOVIES_COUNT = movies.cardinality().numpy()
连续特征可能需要归一化,以便它们落在模型可接受的范围内。我们将给出此类归一化的两个示例。
一种常见的转换是将连续特征转化为多个类别特征。如果我们有理由怀疑特征的影响是非连续的,这样做是有意义的。
我们需要决定用于离散化的桶数量。然后,我们将使用 Keras 的 FeatureSpace
工具自动查找最小值和最大值,并将该范围除以桶的数量进行离散化。
在此示例中,我们将对用户年龄进行离散化。
AGE_BINS_COUNT = 10
user_age_feature = keras.utils.FeatureSpace.float_discretized(
num_bins=AGE_BINS_COUNT, output_mode="int"
)
通常,我们希望连续特征介于 0 和 1 之间,或介于 -1 和 1 之间。为此,我们可以对具有不同范围的特征进行重缩放。
在此示例中,我们将对评分进行标准化,评分是介于 1 到 5 之间的整数,将其转换为介于 0 到 1 之间的浮点数。我们需要对其进行重缩放和偏移。
user_rating_feature = keras.utils.FeatureSpace.float_rescaled(
scale=1.0 / 4.0, offset=-1.0 / 4.0
)
类别特征是不表达连续数量的特征,而是采用一组固定值中的一个值。
大多数深度学习模型通过将这些特征转换为高维向量来表达它们。在模型训练期间,会调整该向量的值以帮助模型更好地预测其目标。
例如,假设我们的目标是预测哪个用户将观看哪部电影。为此,我们用一个嵌入向量表示每个用户和每部电影。最初,这些嵌入将采用随机值。在训练期间,我们会调整它们,以便用户和他们观看的电影的嵌入最终更接近。
将原始类别特征转换为嵌入通常是一个两步过程:1. 首先,我们需要将原始值转换为一系列连续整数,通常通过构建一个将原始值映射到整数的映射(称为“词汇表”)。2. 其次,我们需要将这些整数转换为嵌入。
我们将使用 Keras 的 FeatureSpace
工具来完成第一步。它的 adapt
方法会自动发现类别特征的词汇表。
user_gender_feature = keras.utils.FeatureSpace.integer_categorical(
num_oov_indices=0, output_mode="int"
)
user_occupation_feature = keras.utils.FeatureSpace.integer_categorical(
num_oov_indices=0, output_mode="int"
)
通过交叉,我们可以对多个类别特征进行特征交互。这对于表达特征组合代表对电影的特定偏好非常有效。
请注意,多个特征的组合可能会产生超大的特征空间,这就是为什么 crossing_dim 参数对于限制交叉特征的输出维度很重要。
在此示例中,我们将使用 Keras 的 FeatureSpace
工具对年龄和性别进行交叉。
USER_GENDER_CROSS_COUNT = 20
user_gender_age_cross = keras.utils.FeatureSpace.cross(
feature_names=("user_gender", "raw_user_age"),
crossing_dim=USER_GENDER_CROSS_COUNT,
output_mode="int",
)
我们可能还想向模型添加文本特征。通常,像产品描述这样的内容是自由格式文本,我们可以希望我们的模型能够学习利用其中包含的信息来做出更好的推荐,特别是在冷启动或长尾场景下。
虽然 MovieLens 数据集没有提供丰富的文本特征,但我们仍然可以使用电影标题。这可能有助于我们捕获标题非常相似的电影很可能属于同一系列的事实。
我们需要对文本应用的第一个转换是标记化(分割成组成词或词片段),然后是词汇学习,最后是嵌入。
keras.layers.TextVectorization
层可以为我们完成前两个步骤。
title_vectorizer = keras.layers.TextVectorization(
max_tokens=10_000, output_sequence_length=16, dtype="int32"
)
title_vectorizer.adapt(movies.map(lambda x: x["movie_title"]))
让我们试试看
for data in movies.take(1).as_numpy_iterator():
print(title_vectorizer(data["movie_title"]))
[ 59 187 622 5 0 0 0 0 0 0 0 0 0 0 0 0]
每个标题都被转换成一个标记序列,每个我们标记化的片段对应一个标记。
我们可以检查学习到的词汇表,以验证该层正在使用正确的标记化方法。
print(title_vectorizer.get_vocabulary()[40:50])
[np.str_('paris'), np.str_('little'), np.str_('last'), np.str_('ii'), np.str_('1988'), np.str_('king'), np.str_('from'), np.str_('city'), np.str_('boys'), np.str_('murder')]
这看起来是正确的,该层正在将标题标记化为单个词。稍后,我们将看到如何嵌入这段标记化的文本。现在,我们将此向量化器转换为一个 Keras FeatureSpace
特征。
title_feature = keras.utils.FeatureSpace.feature(
preprocessor=title_vectorizer, dtype="string", output_mode="float"
)
TITLE_TOKEN_COUNT = title_vectorizer.vocabulary_size()
现在我们可以将特征与预处理器一起组合到 FeatureSpace
对象中。然后我们使用 adapt
方法遍历数据集并学习需要学习的内容,例如类别特征的词汇表大小或分桶特征的最小值和最大值。
feature_space = keras.utils.FeatureSpace(
features={
# Numerical features to discretize.
"raw_user_age": user_age_feature,
# Categorical features encoded as integers.
"user_gender": user_gender_feature,
"user_occupation_label": user_occupation_feature,
# Labels are ratings between 0 and 1.
"user_rating": user_rating_feature,
"movie_title": title_feature,
},
crosses=[user_gender_age_cross],
output_mode="dict",
)
feature_space.adapt(ratings)
GENDERS_COUNT = feature_space.preprocessors["user_gender"].vocabulary_size()
OCCUPATIONS_COUNT = feature_space.preprocessors[
"user_occupation_label"
].vocabulary_size()
我们的模型将基于一个 Retrieval
层,该层可以从完整的候选集中提供一组最佳候选。为此,召回层需要知道所有候选及其特征。在本节中,我们将收集所有电影及其相关特征的完整集合。
首先,我们将数据集中的所有原始特征收集到列表中。即电影的标题和类型。请注意,每部电影都关联有一个或多个类型,并且电影的类型数量各不相同。
movie_titles = [""] * (MOVIES_COUNT + 1)
movie_genres = [[]] * (MOVIES_COUNT + 1)
for x in movies.as_numpy_iterator():
movie_id = int(x["movie_id"])
movie_titles[movie_id] = x["movie_title"]
movie_genres[movie_id] = x["movie_genres"].tolist()
类型已经是类别编号的形式,从零开始。然而,我们需要确定两件事:- 单部电影可以拥有的最大类型数量;这将决定此特征的维度。- 类型的最大值,这将给出总类型数量并确定我们的类型嵌入表的大小。
MAX_GENRES_PER_MOVIE = 0
max_genre_id = 0
for one_movie_genres in movie_genres:
MAX_GENRES_PER_MOVIE = max(MAX_GENRES_PER_MOVIE, len(one_movie_genres))
if one_movie_genres:
max_genre_id = max(max_genre_id, max(one_movie_genres))
GENRES_COUNT = max_genre_id + 1
现在我们需要用一个词汇外值填充类型,以便将类型表示为固定大小的向量。为简单起见,我们将用零填充,因此我们将类型的编号加一,以避免与编号为零(有效类型)的类型冲突。
movie_genres = [
[g + 1 for g in genres] + [0] * (MAX_GENRES_PER_MOVIE - len(genres))
for genres in movie_genres
]
然后,我们对所有电影标题进行向量化。
movie_titles_vectors = title_vectorizer(movie_titles)
现在我们准备将这些数据组合成一个数据集。最后一步是确保所有内容都是可以被召回层使用的原生张量。提醒一下,电影 ID 零不存在。
MOVIES_DATASET = {
"movie_id": keras.ops.arange(0, MOVIES_COUNT + 1, dtype="int32"),
"movie_title_vector": movie_titles_vectors,
"movie_genres": keras.ops.convert_to_tensor(movie_genres, dtype="int32"),
}
现在我们可以定义我们的预处理函数。大多数特征将由 FeatureSpace
处理。用户 ID 和电影 ID 需要提取。电影类型需要填充。然后所有内容将打包成一个元组,其中包含一个输入特征字典和一个用于评分(用作标签)的浮点数。
def preprocess_rating(x):
features = feature_space(
{
"raw_user_age": x["raw_user_age"],
"user_gender": x["user_gender"],
"user_occupation_label": x["user_occupation_label"],
"user_rating": x["user_rating"],
"movie_title": x["movie_title"],
}
)
features = {k: tf.squeeze(v, axis=0) for k, v in features.items()}
movie_genres = x["movie_genres"]
return (
{
# User inputs are user ID and user features
"user_id": int(x["user_id"]),
"raw_user_age": features["raw_user_age"],
"user_gender": features["user_gender"],
"user_occupation_label": features["user_occupation_label"],
"user_gender_X_raw_user_age": features["user_gender_X_raw_user_age"],
# Movie inputs are movie ID, vectorized title and genres
"movie_id": int(x["movie_id"]),
"movie_title_vector": features["movie_title"],
"movie_genres": tf.pad(
movie_genres + 1,
[[0, MAX_GENRES_PER_MOVIE - tf.shape(movie_genres)[0]]],
),
},
# Label is user rating between 0 and 1
features["user_rating"],
)
我们对数据进行洗牌,然后将其分割为训练集和测试集。
shuffled_ratings = ratings.map(preprocess_rating).shuffle(
100_000, seed=42, reshuffle_each_iteration=False
)
train_ratings = shuffled_ratings.take(80_000).batch(1000).cache()
test_ratings = shuffled_ratings.skip(80_000).take(20_000).batch(1000).cache()
查询模型的首要任务是将用户特征转换为嵌入。然后将这些嵌入连接成一个单一向量。
定义深度模型需要在此第一组嵌入之上堆叠更多层。一个逐渐变窄、由激活函数分隔的层堆叠是一个常见模式。
+----------------------+
| 64 x 32 |
+----------------------+
| relu
+--------------------------+
| 128 x 64 |
+--------------------------+
| relu
+------------------------------+
| ... x 128 |
+------------------------------+
由于深度线性模型的表达能力不大于浅层线性模型,我们在除最后一个隐藏层之外的所有层中使用 ReLU 激活。最后一个隐藏层不使用任何激活函数:使用激活函数会限制最终嵌入的输出空间,并可能对模型性能产生负面影响。例如,如果在投影层中使用 ReLU,输出嵌入中的所有分量都将是非负的。
我们将在这里尝试这一点。为了方便不同深度模型的实验,让我们定义一个模型的深度(和宽度)由构造函数参数确定。layer_sizes
参数提供了模型的深度和宽度。我们可以改变它来实验更浅或更深的模型。
class QueryModel(keras.Model):
"""Model for encoding user queries."""
def __init__(self, layer_sizes, embedding_dimension=32):
"""Construct a model for encoding user queries.
Args:
layer_sizes: A list of integers where the i-th entry represents the
number of units the i-th layer contains.
embedding_dimension: Output dimension for all embedding tables.
"""
super().__init__()
# We first generate embeddings.
self.user_embedding = keras.layers.Embedding(
# +1 for user ID zero, which does not exist
USERS_COUNT + 1,
embedding_dimension,
)
self.gender_embedding = keras.layers.Embedding(
GENDERS_COUNT, embedding_dimension
)
self.age_embedding = keras.layers.Embedding(AGE_BINS_COUNT, embedding_dimension)
self.gender_x_age_embedding = keras.layers.Embedding(
USER_GENDER_CROSS_COUNT, embedding_dimension
)
self.occupation_embedding = keras.layers.Embedding(
OCCUPATIONS_COUNT, embedding_dimension
)
# Then construct the layers.
self.dense_layers = keras.Sequential()
# Use the ReLU activation for all but the last layer.
for layer_size in layer_sizes[:-1]:
self.dense_layers.add(keras.layers.Dense(layer_size, activation="relu"))
# No activation for the last layer.
self.dense_layers.add(keras.layers.Dense(layer_sizes[-1]))
def call(self, inputs):
# Take the inputs, pass each through its embedding layer, concatenate.
feature_embedding = keras.ops.concatenate(
[
self.user_embedding(inputs["user_id"]),
self.gender_embedding(inputs["user_gender"]),
self.age_embedding(inputs["raw_user_age"]),
self.gender_x_age_embedding(inputs["user_gender_X_raw_user_age"]),
self.occupation_embedding(inputs["user_occupation_label"]),
],
axis=1,
)
return self.dense_layers(feature_embedding)
我们可以对候选模型采用相同的方法。同样,我们首先将电影特征转换为嵌入,将它们连接起来,然后用隐藏层进行扩展。
class CandidateModel(keras.Model):
"""Model for encoding candidates (movies)."""
def __init__(self, layer_sizes, embedding_dimension=32):
"""Construct a model for encoding candidates (movies).
Args:
layer_sizes: A list of integers where the i-th entry represents the
number of units the i-th layer contains.
embedding_dimension: Output dimension for all embedding tables.
"""
super().__init__()
# We first generate embeddings.
self.movie_embedding = keras.layers.Embedding(
# +1 for movie ID zero, which does not exist
MOVIES_COUNT + 1,
embedding_dimension,
)
# Take all the title tokens for the title of the movie, embed each
# token, and then take the mean of all token embeddings.
self.movie_title_embedding = keras.Sequential(
[
keras.layers.Embedding(
# +1 for OOV token, which is used for padding
TITLE_TOKEN_COUNT + 1,
embedding_dimension,
mask_zero=True,
),
keras.layers.GlobalAveragePooling1D(),
]
)
# Take all the genres for the movie, embed each genre, and then take the
# mean of all genre embeddings.
self.movie_genres_embedding = keras.Sequential(
[
keras.layers.Embedding(
# +1 for OOV genre, which is used for padding
GENRES_COUNT + 1,
embedding_dimension,
mask_zero=True,
),
keras.layers.GlobalAveragePooling1D(),
]
)
# Then construct the layers.
self.dense_layers = keras.Sequential()
# Use the ReLU activation for all but the last layer.
for layer_size in layer_sizes[:-1]:
self.dense_layers.add(keras.layers.Dense(layer_size, activation="relu"))
# No activation for the last layer.
self.dense_layers.add(keras.layers.Dense(layer_sizes[-1]))
def call(self, inputs):
movie_id = inputs["movie_id"]
movie_title_vector = inputs["movie_title_vector"]
movie_genres = inputs["movie_genres"]
feature_embedding = keras.ops.concatenate(
[
self.movie_embedding(movie_id),
self.movie_title_embedding(movie_title_vector),
self.movie_genres_embedding(movie_genres),
],
axis=1,
)
return self.dense_layers(feature_embedding)
定义了 QueryModel 和 CandidateModel 后,我们可以组合一个组合模型并实现我们的损失和评估指标逻辑。为简单起见,我们将强制要求查询模型和候选模型的模型结构相同。
class RetrievalModel(keras.Model):
"""Combined model."""
def __init__(
self,
layer_sizes=(32,),
embedding_dimension=32,
retrieval_k=100,
):
"""Construct a combined model.
Args:
layer_sizes: A list of integers where the i-th entry represents the
number of units the i-th layer contains.
embedding_dimension: Output dimension for all embedding tables.
retrieval_k: How many candidate movies to retrieve.
"""
super().__init__()
self.query_model = QueryModel(layer_sizes, embedding_dimension)
self.candidate_model = CandidateModel(layer_sizes, embedding_dimension)
self.retrieval = keras_rs.layers.BruteForceRetrieval(
k=retrieval_k, return_scores=False
)
self.update_candidates() # Provide an initial set of candidates
self.loss_fn = keras.losses.MeanSquaredError()
self.top_k_metric = keras.metrics.SparseTopKCategoricalAccuracy(
k=retrieval_k, from_sorted_ids=True
)
def update_candidates(self):
self.retrieval.update_candidates(
self.candidate_model.predict(MOVIES_DATASET, verbose=0)
)
def call(self, inputs, training=False):
query_embeddings = self.query_model(
{
"user_id": inputs["user_id"],
"raw_user_age": inputs["raw_user_age"],
"user_gender": inputs["user_gender"],
"user_occupation_label": inputs["user_occupation_label"],
"user_gender_X_raw_user_age": inputs["user_gender_X_raw_user_age"],
}
)
candidate_embeddings = self.candidate_model(
{
"movie_id": inputs["movie_id"],
"movie_title_vector": inputs["movie_title_vector"],
"movie_genres": inputs["movie_genres"],
}
)
result = {
"query_embeddings": query_embeddings,
"candidate_embeddings": candidate_embeddings,
}
if not training:
# No need to spend time extracting top predicted movies during
# training, they are not used.
result["predictions"] = self.retrieval(query_embeddings)
return result
def evaluate(
self,
x=None,
y=None,
batch_size=None,
verbose="auto",
sample_weight=None,
steps=None,
callbacks=None,
return_dict=False,
**kwargs,
):
"""Overridden to update the candidate set.
Before evaluating the model, we need to update our retrieval layer by
re-computing the values predicted by the candidate model for all the
candidates.
"""
self.update_candidates()
return super().evaluate(
x,
y,
batch_size=batch_size,
verbose=verbose,
sample_weight=sample_weight,
steps=steps,
callbacks=callbacks,
return_dict=return_dict,
**kwargs,
)
def compute_loss(self, x, y, y_pred, sample_weight, training=True):
query_embeddings = y_pred["query_embeddings"]
candidate_embeddings = y_pred["candidate_embeddings"]
labels = keras.ops.expand_dims(y, -1)
# Compute the affinity score by multiplying the two embeddings.
scores = keras.ops.sum(
keras.ops.multiply(query_embeddings, candidate_embeddings),
axis=1,
keepdims=True,
)
return self.loss_fn(labels, scores, sample_weight)
def compute_metrics(self, x, y, y_pred, sample_weight=None):
if "predictions" in y_pred:
# We are evaluating or predicting. Update `top_k_metric`.
movie_ids = x["movie_id"]
predictions = y_pred["predictions"]
# For `top_k_metric`, which is a `SparseTopKCategoricalAccuracy`, we
# only take top rated movies, and we put a weight of 0 for the rest.
rating_weight = keras.ops.cast(keras.ops.greater(y, 0.9), "float32")
sample_weight = (
rating_weight
if sample_weight is None
else keras.ops.multiply(rating_weight, sample_weight)
)
self.top_k_metric.update_state(
movie_ids, predictions, sample_weight=sample_weight
)
return self.get_metrics_result()
else:
# We are training. `top_k_metric` is not updated and is zero, so
# don't report it.
result = self.get_metrics_result()
result.pop(self.top_k_metric.name)
return result
我们准备尝试我们的第一个浅层模型!
NUM_EPOCHS = 30
one_layer_model = RetrievalModel((32,))
one_layer_model.compile(optimizer=keras.optimizers.Adagrad(0.05))
one_layer_history = one_layer_model.fit(
train_ratings,
validation_data=test_ratings,
validation_freq=5,
epochs=NUM_EPOCHS,
)
Epoch 1/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 19s 18ms/step - loss: 0.2392
Epoch 2/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - loss: 0.0764
Epoch 3/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0748
Epoch 4/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0737
Epoch 5/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 19s 242ms/step - loss: 0.0727 - val_loss: 0.0736 - val_sparse_top_k_categorical_accuracy: 0.1196
Epoch 6/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0718
Epoch 7/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0710
Epoch 8/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0702
Epoch 9/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0694
Epoch 10/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step - loss: 0.0685 - val_loss: 0.0695 - val_sparse_top_k_categorical_accuracy: 0.2117
Epoch 11/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0677
Epoch 12/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0669
Epoch 13/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0661
Epoch 14/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0653
Epoch 15/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step - loss: 0.0645 - val_loss: 0.0655 - val_sparse_top_k_categorical_accuracy: 0.2742
Epoch 16/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0637
Epoch 17/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0629
Epoch 18/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0622
Epoch 19/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0615
Epoch 20/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step - loss: 0.0608 - val_loss: 0.0621 - val_sparse_top_k_categorical_accuracy: 0.2994
Epoch 21/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0602
Epoch 22/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0596
Epoch 23/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0590
Epoch 24/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0585
Epoch 25/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step - loss: 0.0580 - val_loss: 0.0596 - val_sparse_top_k_categorical_accuracy: 0.3150
Epoch 26/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0576
Epoch 27/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0572
Epoch 28/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0569
Epoch 29/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0565
Epoch 30/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 7ms/step - loss: 0.0562 - val_loss: 0.0581 - val_sparse_top_k_categorical_accuracy: 0.3100
这为我们提供了大约 0.30 的 top-100 准确率。我们可以将其作为评估深度模型的参考点。
那么具有两层深度模型的表现如何?
two_layer_model = RetrievalModel((64, 32))
two_layer_model.compile(optimizer=keras.optimizers.Adagrad(0.05))
two_layer_history = two_layer_model.fit(
train_ratings,
validation_data=test_ratings,
validation_freq=5,
epochs=NUM_EPOCHS,
)
Epoch 1/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 2s 15ms/step - loss: 0.2066
Epoch 2/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - loss: 0.0756
Epoch 3/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0736
Epoch 4/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0721
Epoch 5/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 2s 25ms/step - loss: 0.0708 - val_loss: 0.0713 - val_sparse_top_k_categorical_accuracy: 0.1530
Epoch 6/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0696
Epoch 7/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0685
Epoch 8/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 8ms/step - loss: 0.0675
Epoch 9/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0664
Epoch 10/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - loss: 0.0654 - val_loss: 0.0661 - val_sparse_top_k_categorical_accuracy: 0.2355
Epoch 11/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0644
Epoch 12/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0634
Epoch 13/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0625
Epoch 14/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0616
Epoch 15/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step - loss: 0.0608 - val_loss: 0.0618 - val_sparse_top_k_categorical_accuracy: 0.2882
Epoch 16/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0600
Epoch 17/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0594
Epoch 18/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0587
Epoch 19/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0582
Epoch 20/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 10ms/step - loss: 0.0577 - val_loss: 0.0591 - val_sparse_top_k_categorical_accuracy: 0.3072
Epoch 21/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0573
Epoch 22/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0569
Epoch 23/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0566
Epoch 24/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0562
Epoch 25/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 6ms/step - loss: 0.0560 - val_loss: 0.0577 - val_sparse_top_k_categorical_accuracy: 0.3134
Epoch 26/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0557
Epoch 27/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0555
Epoch 28/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0553
Epoch 29/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0551
Epoch 30/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - loss: 0.0549 - val_loss: 0.0569 - val_sparse_top_k_categorical_accuracy: 0.3093
虽然深度模型最初看起来比浅层模型学习得稍好一些,但在训练结束时差异变得微乎其微。我们可以绘制验证准确率曲线来说明这一点。
METRIC = "val_sparse_top_k_categorical_accuracy"
num_validation_runs = len(one_layer_history.history[METRIC])
epochs = [(x + 1) * 5 for x in range(num_validation_runs)]
plt.plot(epochs, one_layer_history.history[METRIC], label="1 layer")
plt.plot(epochs, two_layer_history.history[METRIC], label="2 layers")
plt.title("Accuracy vs epoch")
plt.xlabel("epoch")
plt.ylabel("Top-100 accuracy")
plt.legend()
plt.show()
深度模型不一定更好。以下模型将深度扩展到三层。
three_layer_model = RetrievalModel((128, 64, 32))
three_layer_model.compile(optimizer=keras.optimizers.Adagrad(0.05))
three_layer_history = three_layer_model.fit(
train_ratings,
validation_data=test_ratings,
validation_freq=5,
epochs=NUM_EPOCHS,
)
Epoch 1/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 3s 17ms/step - loss: 0.1880
Epoch 2/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - loss: 0.0751
Epoch 3/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0734
Epoch 4/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0720
Epoch 5/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 2s 26ms/step - loss: 0.0707 - val_loss: 0.0712 - val_sparse_top_k_categorical_accuracy: 0.1276
Epoch 6/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0694
Epoch 7/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0682
Epoch 8/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0670
Epoch 9/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0659
Epoch 10/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - loss: 0.0648 - val_loss: 0.0656 - val_sparse_top_k_categorical_accuracy: 0.2552
Epoch 11/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0637
Epoch 12/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0628
Epoch 13/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0618
Epoch 14/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0610
Epoch 15/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - loss: 0.0603 - val_loss: 0.0616 - val_sparse_top_k_categorical_accuracy: 0.2816
Epoch 16/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0596
Epoch 17/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0590
Epoch 18/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0584
Epoch 19/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0579
Epoch 20/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 7ms/step - loss: 0.0575 - val_loss: 0.0592 - val_sparse_top_k_categorical_accuracy: 0.2921
Epoch 21/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0571
Epoch 22/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0567
Epoch 23/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0564
Epoch 24/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0561
Epoch 25/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - loss: 0.0559 - val_loss: 0.0578 - val_sparse_top_k_categorical_accuracy: 0.2983
Epoch 26/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0557
Epoch 27/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - loss: 0.0555
Epoch 28/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0553
Epoch 29/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 0s 4ms/step - loss: 0.0551
Epoch 30/30
80/80 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - loss: 0.0549 - val_loss: 0.0571 - val_sparse_top_k_categorical_accuracy: 0.3006
与浅层模型相比,我们没有看到明显的改进。
plt.plot(epochs, one_layer_history.history[METRIC], label="1 layer")
plt.plot(epochs, two_layer_history.history[METRIC], label="2 layers")
plt.plot(epochs, three_layer_history.history[METRIC], label="3 layers")
plt.title("Accuracy vs epoch")
plt.xlabel("epoch")
plt.ylabel("Top-100 accuracy")
plt.legend()
plt.show()
这很好地说明了以下事实:深度和大型模型虽然能够达到卓越的性能,但通常需要非常仔细的调优。例如,在本教程中,我们始终使用单一的固定学习率。其他选择可能会带来非常不同的结果,值得探索。
通过适当的调优和足够的数据,构建更大、更深模型所付出的努力在许多情况下都是值得的:更大的模型可以显著提高预测准确率。
在本教程中,我们使用全连接层和激活函数扩展了我们的召回模型。要了解如何创建不仅可以执行召回任务,还可以执行评分任务的模型,请查看多任务教程。