作者: Sachin Prasad, Divyashree Sreepathihalli, Ian Stenbit
创建日期 2024/10/11
最后修改日期 2024/10/22
描述: 使用 KerasHub 进行 DeepLabV3 训练和推理。
语义分割是一种计算机视觉任务,它涉及将诸如“人”、“自行车”或“背景”之类的类别标签分配给图像的每个像素,从而有效地将图像划分为与不同对象类别相对应的区域。
KerasHub 提供了用于语义分割的 DeepLabv3、DeepLabv3+、SegFormer 等模型。
本指南演示了如何微调和使用 DeepLabv3+ 模型,该模型由 Google 开发,用于使用 KerasHub 进行图像语义分割。它的架构结合了空洞卷积、上下文信息聚合和强大的骨干网络,以实现准确和详细的语义分割。
DeepLabv3+ 通过添加一个简单而有效的解码器模块来改进分割结果,尤其是在对象边界附近,从而扩展了 DeepLabv3。这两个模型都在各种图像分割基准测试中取得了最先进的结果。
用于语义图像分割的具有空洞可分离卷积的编码器-解码器 重新思考用于语义图像分割的空洞卷积
让我们安装依赖项并导入必要的模块。
要运行本教程,您需要安装以下软件包
keras-hub
keras
!pip install -q --upgrade keras-hub
!pip install -q --upgrade keras
安装 keras
和 keras-hub
后,为 keras
设置后端。本指南可以使用任何后端(Tensorflow、JAX、PyTorch)运行。
import os
os.environ["KERAS_BACKEND"] = "jax"
import keras
from keras import ops
import keras_hub
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
KerasHub 语义分割 API 中的最高级 API 是 keras_hub.models
API。此 API 包括完全预训练的语义分割模型,例如 keras_hub.models.DeepLabV3ImageSegmenter
。
让我们从构建一个在 Pascal VOC 数据集上预训练的 DeepLabv3 开始。此外,定义模型的预处理函数以预处理图像和标签。注意: 默认情况下,KerasHub 中的 from_preset()
方法会加载具有所有类别的预训练任务权重,在本例中为 21 个类别。
model = keras_hub.models.DeepLabV3ImageSegmenter.from_preset(
"deeplab_v3_plus_resnet50_pascalvoc"
)
image_converter = keras_hub.layers.DeepLabV3ImageConverter(
image_size=(512, 512),
interpolation="bilinear",
)
preprocessor = keras_hub.models.DeepLabV3ImageSegmenterPreprocessor(image_converter)
让我们可视化此预训练模型的结果
filepath = keras.utils.get_file(
origin="https://storage.googleapis.com/keras-cv/models/paligemma/cow_beach_1.png"
)
image = keras.utils.load_img(filepath)
image = np.array(image)
image = preprocessor(image)
image = keras.ops.expand_dims(image, axis=0)
preds = ops.expand_dims(ops.argmax(model.predict(image), axis=-1), axis=-1)
def plot_segmentation(original_image, predicted_mask):
plt.figure(figsize=(5, 5))
plt.subplot(1, 2, 1)
plt.imshow(original_image[0] / 255)
plt.axis("off")
plt.subplot(1, 2, 2)
plt.imshow(predicted_mask[0])
plt.axis("off")
plt.tight_layout()
plt.show()
plot_segmentation(image, preds)
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 5s/步
1/1 ━━━━━━━━━━━━━━━━━━━━ 5s 5s/步
在本指南中,我们将为 KerasHub DeepLabV3 语义分割模型组装一个完整的训练流程。这包括数据加载、增强、训练、指标评估和推理!
我们下载 Pascal VOC 2012 数据集,其中包含此处提供的其他注释 来自逆检测器的语义轮廓,并将它们拆分为训练数据集 train_ds
和 eval_ds
。
# @title helper functions
import logging
import multiprocessing
from builtins import open
import os.path
import random
import xml
import tensorflow_datasets as tfds
VOC_URL = "https://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar"
SBD_URL = "https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz"
# Note that this list doesn't contain the background class. In the
# classification use case, the label is 0 based (aeroplane -> 0), whereas in
# segmentation use case, the 0 is reserved for background, so aeroplane maps to
# 1.
CLASSES = [
"aeroplane",
"bicycle",
"bird",
"boat",
"bottle",
"bus",
"car",
"cat",
"chair",
"cow",
"diningtable",
"dog",
"horse",
"motorbike",
"person",
"pottedplant",
"sheep",
"sofa",
"train",
"tvmonitor",
]
# This is used to map between string class to index.
CLASS_TO_INDEX = {name: index for index, name in enumerate(CLASSES)}
# For the mask data in the PNG file, the encoded raw pixel value need to be
# converted to the proper class index. In the following map, [0, 0, 0] will be
# convert to 0, and [128, 0, 0] will be converted to 1, so on so forth. Also
# note that the mask class is 1 base since class 0 is reserved for the
# background. The [128, 0, 0] (class 1) is mapped to `aeroplane`.
VOC_PNG_COLOR_VALUE = [
[0, 0, 0],
[128, 0, 0],
[0, 128, 0],
[128, 128, 0],
[0, 0, 128],
[128, 0, 128],
[0, 128, 128],
[128, 128, 128],
[64, 0, 0],
[192, 0, 0],
[64, 128, 0],
[192, 128, 0],
[64, 0, 128],
[192, 0, 128],
[64, 128, 128],
[192, 128, 128],
[0, 64, 0],
[128, 64, 0],
[0, 192, 0],
[128, 192, 0],
[0, 64, 128],
]
# Will be populated by maybe_populate_voc_color_mapping() below.
VOC_PNG_COLOR_MAPPING = None
def maybe_populate_voc_color_mapping():
"""Lazy creation of VOC_PNG_COLOR_MAPPING, which could take 64M memory."""
global VOC_PNG_COLOR_MAPPING
if VOC_PNG_COLOR_MAPPING is None:
VOC_PNG_COLOR_MAPPING = [0] * (256**3)
for i, colormap in enumerate(VOC_PNG_COLOR_VALUE):
VOC_PNG_COLOR_MAPPING[
(colormap[0] * 256 + colormap[1]) * 256 + colormap[2]
] = i
# There is a special mapping with [224, 224, 192] -> 255
VOC_PNG_COLOR_MAPPING[224 * 256 * 256 + 224 * 256 + 192] = 255
VOC_PNG_COLOR_MAPPING = tf.constant(VOC_PNG_COLOR_MAPPING)
return VOC_PNG_COLOR_MAPPING
def parse_annotation_data(annotation_file_path):
"""Parse the annotation XML file for the image.
The annotation contains the metadata, as well as the object bounding box
information.
"""
with open(annotation_file_path, "r") as f:
root = xml.etree.ElementTree.parse(f).getroot()
size = root.find("size")
width = int(size.find("width").text)
height = int(size.find("height").text)
objects = []
for obj in root.findall("object"):
# Get object's label name.
label = CLASS_TO_INDEX[obj.find("name").text.lower()]
# Get objects' pose name.
pose = obj.find("pose").text.lower()
is_truncated = obj.find("truncated").text == "1"
is_difficult = obj.find("difficult").text == "1"
bndbox = obj.find("bndbox")
xmax = int(bndbox.find("xmax").text)
xmin = int(bndbox.find("xmin").text)
ymax = int(bndbox.find("ymax").text)
ymin = int(bndbox.find("ymin").text)
objects.append(
{
"label": label,
"pose": pose,
"bbox": [ymin, xmin, ymax, xmax],
"is_truncated": is_truncated,
"is_difficult": is_difficult,
}
)
return {"width": width, "height": height, "objects": objects}
def get_image_ids(data_dir, split):
"""To get image ids from the "train", "eval" or "trainval" files of VOC data."""
data_file_mapping = {
"train": "train.txt",
"eval": "val.txt",
"trainval": "trainval.txt",
}
with open(
os.path.join(data_dir, "ImageSets", "Segmentation", data_file_mapping[split]),
"r",
) as f:
image_ids = f.read().splitlines()
logging.info(f"Received {len(image_ids)} images for {split} dataset.")
return image_ids
def get_sbd_image_ids(data_dir, split):
"""To get image ids from the "sbd_train", "sbd_eval" from files of SBD data."""
data_file_mapping = {"sbd_train": "train.txt", "sbd_eval": "val.txt"}
with open(
os.path.join(data_dir, data_file_mapping[split]),
"r",
) as f:
image_ids = f.read().splitlines()
logging.info(f"Received {len(image_ids)} images for {split} dataset.")
return image_ids
def parse_single_image(image_file_path):
"""Creates metadata of VOC images and path."""
data_dir, image_file_name = os.path.split(image_file_path)
data_dir = os.path.normpath(os.path.join(data_dir, os.path.pardir))
image_id, _ = os.path.splitext(image_file_name)
class_segmentation_file_path = os.path.join(
data_dir, "SegmentationClass", image_id + ".png"
)
object_segmentation_file_path = os.path.join(
data_dir, "SegmentationObject", image_id + ".png"
)
annotation_file_path = os.path.join(data_dir, "Annotations", image_id + ".xml")
image_annotations = parse_annotation_data(annotation_file_path)
result = {
"image/filename": image_id + ".jpg",
"image/file_path": image_file_path,
"segmentation/class/file_path": class_segmentation_file_path,
"segmentation/object/file_path": object_segmentation_file_path,
}
result.update(image_annotations)
# Labels field should be same as the 'object.label'
labels = list(set([o["label"] for o in result["objects"]]))
result["labels"] = sorted(labels)
return result
def parse_single_sbd_image(image_file_path):
"""Creates metadata of SBD images and path."""
data_dir, image_file_name = os.path.split(image_file_path)
data_dir = os.path.normpath(os.path.join(data_dir, os.path.pardir))
image_id, _ = os.path.splitext(image_file_name)
class_segmentation_file_path = os.path.join(data_dir, "cls", image_id + ".mat")
object_segmentation_file_path = os.path.join(data_dir, "inst", image_id + ".mat")
result = {
"image/filename": image_id + ".jpg",
"image/file_path": image_file_path,
"segmentation/class/file_path": class_segmentation_file_path,
"segmentation/object/file_path": object_segmentation_file_path,
}
return result
def build_metadata(data_dir, image_ids):
"""Transpose the metadata which convert from list of dict to dict of list."""
# Parallel process all the images.
image_file_paths = [
os.path.join(data_dir, "JPEGImages", i + ".jpg") for i in image_ids
]
pool_size = 10 if len(image_ids) > 10 else len(image_ids)
with multiprocessing.Pool(pool_size) as p:
metadata = p.map(parse_single_image, image_file_paths)
keys = [
"image/filename",
"image/file_path",
"segmentation/class/file_path",
"segmentation/object/file_path",
"labels",
"width",
"height",
]
result = {}
for key in keys:
values = [value[key] for value in metadata]
result[key] = values
# The ragged objects need some special handling
for key in ["label", "pose", "bbox", "is_truncated", "is_difficult"]:
values = []
objects = [value["objects"] for value in metadata]
for object in objects:
values.append([o[key] for o in object])
result["objects/" + key] = values
return result
def build_sbd_metadata(data_dir, image_ids):
"""Transpose the metadata which convert from list of dict to dict of list."""
# Parallel process all the images.
image_file_paths = [os.path.join(data_dir, "img", i + ".jpg") for i in image_ids]
pool_size = 10 if len(image_ids) > 10 else len(image_ids)
with multiprocessing.Pool(pool_size) as p:
metadata = p.map(parse_single_sbd_image, image_file_paths)
keys = [
"image/filename",
"image/file_path",
"segmentation/class/file_path",
"segmentation/object/file_path",
]
result = {}
for key in keys:
values = [value[key] for value in metadata]
result[key] = values
return result
def decode_png_mask(mask):
"""Decode the raw PNG image and convert it to 2D tensor with probably
class."""
# Cast the mask to int32 since the original uint8 will overflow when
# multiplied with 256
mask = tf.cast(mask, tf.int32)
mask = mask[:, :, 0] * 256 * 256 + mask[:, :, 1] * 256 + mask[:, :, 2]
mask = tf.expand_dims(tf.gather(VOC_PNG_COLOR_MAPPING, mask), -1)
mask = tf.cast(mask, tf.uint8)
return mask
def load_images(example):
"""Loads VOC images for segmentation task from the provided paths"""
image_file_path = example.pop("image/file_path")
segmentation_class_file_path = example.pop("segmentation/class/file_path")
segmentation_object_file_path = example.pop("segmentation/object/file_path")
image = tf.io.read_file(image_file_path)
image = tf.image.decode_jpeg(image)
segmentation_class_mask = tf.io.read_file(segmentation_class_file_path)
segmentation_class_mask = tf.image.decode_png(segmentation_class_mask)
segmentation_class_mask = decode_png_mask(segmentation_class_mask)
segmentation_object_mask = tf.io.read_file(segmentation_object_file_path)
segmentation_object_mask = tf.image.decode_png(segmentation_object_mask)
segmentation_object_mask = decode_png_mask(segmentation_object_mask)
example.update(
{
"image": image,
"class_segmentation": segmentation_class_mask,
"object_segmentation": segmentation_object_mask,
}
)
return example
def load_sbd_images(image_file_path, seg_cls_file_path, seg_obj_file_path):
"""Loads SBD images for segmentation task from the provided paths"""
image = tf.io.read_file(image_file_path)
image = tf.image.decode_jpeg(image)
segmentation_class_mask = tfds.core.lazy_imports.scipy.io.loadmat(seg_cls_file_path)
segmentation_class_mask = segmentation_class_mask["GTcls"]["Segmentation"][0][0]
segmentation_class_mask = segmentation_class_mask[..., np.newaxis]
segmentation_object_mask = tfds.core.lazy_imports.scipy.io.loadmat(
seg_obj_file_path
)
segmentation_object_mask = segmentation_object_mask["GTinst"]["Segmentation"][0][0]
segmentation_object_mask = segmentation_object_mask[..., np.newaxis]
return {
"image": image,
"class_segmentation": segmentation_class_mask,
"object_segmentation": segmentation_object_mask,
}
def build_dataset_from_metadata(metadata):
"""Builds TensorFlow dataset from the image metadata of VOC dataset."""
# The objects need some manual conversion to ragged tensor.
metadata["labels"] = tf.ragged.constant(metadata["labels"])
metadata["objects/label"] = tf.ragged.constant(metadata["objects/label"])
metadata["objects/pose"] = tf.ragged.constant(metadata["objects/pose"])
metadata["objects/is_truncated"] = tf.ragged.constant(
metadata["objects/is_truncated"]
)
metadata["objects/is_difficult"] = tf.ragged.constant(
metadata["objects/is_difficult"]
)
metadata["objects/bbox"] = tf.ragged.constant(
metadata["objects/bbox"], ragged_rank=1
)
dataset = tf.data.Dataset.from_tensor_slices(metadata)
dataset = dataset.map(load_images, num_parallel_calls=tf.data.AUTOTUNE)
return dataset
def build_sbd_dataset_from_metadata(metadata):
"""Builds TensorFlow dataset from the image metadata of SBD dataset."""
img_filepath = metadata["image/file_path"]
cls_filepath = metadata["segmentation/class/file_path"]
obj_filepath = metadata["segmentation/object/file_path"]
def md_gen():
c = list(zip(img_filepath, cls_filepath, obj_filepath))
# random shuffling for each generator boosts up the quality.
random.shuffle(c)
for fp in c:
img_fp, cls_fp, obj_fp = fp
yield load_sbd_images(img_fp, cls_fp, obj_fp)
dataset = tf.data.Dataset.from_generator(
md_gen,
output_signature=(
{
"image": tf.TensorSpec(shape=(None, None, 3), dtype=tf.uint8),
"class_segmentation": tf.TensorSpec(
shape=(None, None, 1), dtype=tf.uint8
),
"object_segmentation": tf.TensorSpec(
shape=(None, None, 1), dtype=tf.uint8
),
}
),
)
return dataset
def load(
split="sbd_train",
data_dir=None,
):
"""Load the Pacal VOC 2012 dataset.
This function will download the data tar file from remote if needed, and
untar to the local `data_dir`, and build dataset from it.
It supports both VOC2012 and Semantic Boundaries Dataset (SBD).
The returned segmentation masks will be int ranging from [0, num_classes),
as well as 255 which is the boundary mask.
Args:
split: string, can be 'train', 'eval', 'trainval', 'sbd_train', or
'sbd_eval'. 'sbd_train' represents the training dataset for SBD
dataset, while 'train' represents the training dataset for VOC2012
dataset. Defaults to `sbd_train`.
data_dir: string, local directory path for the loaded data. This will be
used to download the data file, and unzip. It will be used as a
cache directory. Defaults to None, and `~/.keras/pascal_voc_2012`
will be used.
"""
supported_split_value = [
"train",
"eval",
"trainval",
"sbd_train",
"sbd_eval",
]
if split not in supported_split_value:
raise ValueError(
f"The support value for `split` are {supported_split_value}. "
f"Got: {split}"
)
if data_dir is not None:
data_dir = os.path.expanduser(data_dir)
if "sbd" in split:
return load_sbd(split, data_dir)
else:
return load_voc(split, data_dir)
def load_voc(
split="train",
data_dir=None,
):
"""This function will download VOC data from a URL. If the data is already
present in the cache directory, it will load the data from that directory
instead.
"""
extracted_dir = os.path.join("VOCdevkit", "VOC2012")
get_data = keras.utils.get_file(
fname=os.path.basename(VOC_URL),
origin=VOC_URL,
cache_dir=data_dir,
extract=True,
)
data_dir = os.path.join(os.path.dirname(get_data), extracted_dir)
image_ids = get_image_ids(data_dir, split)
# len(metadata) = #samples, metadata[i] is a dict.
metadata = build_metadata(data_dir, image_ids)
maybe_populate_voc_color_mapping()
dataset = build_dataset_from_metadata(metadata)
return dataset
def load_sbd(
split="sbd_train",
data_dir=None,
):
"""This function will download SBD data from a URL. If the data is already
present in the cache directory, it will load the data from that directory
instead.
"""
extracted_dir = os.path.join("benchmark_RELEASE", "dataset")
get_data = keras.utils.get_file(
fname=os.path.basename(SBD_URL),
origin=SBD_URL,
cache_dir=data_dir,
extract=True,
)
data_dir = os.path.join(os.path.dirname(get_data), extracted_dir)
image_ids = get_sbd_image_ids(data_dir, split)
# len(metadata) = #samples, metadata[i] is a dict.
metadata = build_sbd_metadata(data_dir, image_ids)
dataset = build_sbd_dataset_from_metadata(metadata)
return dataset
对于训练和评估,让我们使用“sbd_train”和“sbd_eval”。您还可以为 load
函数选择以下任何数据集:“train”、“eval”、“trainval”、“sbd_train”或“sbd_eval”。“sbd_train”表示 SBD 数据集的训练数据集,而“train”表示 VOC2012 数据集的训练数据集。
train_ds = load(split="sbd_train", data_dir="segmentation")
eval_ds = load(split="sbd_eval", data_dir="segmentation")
preprocess_inputs 实用程序函数预处理输入,将其转换为包含图像和 segmentation_masks 的字典。图像和分割掩码都调整为 512x512 大小。然后将生成的数据集分批处理为四组图像和分割掩码对。
def preprocess_inputs(inputs):
def unpackage_inputs(inputs):
return {
"images": inputs["image"],
"segmentation_masks": inputs["class_segmentation"],
}
outputs = inputs.map(unpackage_inputs)
outputs = outputs.map(keras.layers.Resizing(height=512, width=512))
outputs = outputs.batch(4, drop_remainder=True)
return outputs
train_ds = preprocess_inputs(train_ds)
batch = train_ds.take(1).get_single_element()
可以使用 plot_images_masks
函数可视化此预处理输入训练数据的批次。此函数将一批图像、分割掩码和预测掩码作为输入,并在网格中显示它们。
def plot_images_masks(images, masks, pred_masks=None):
num_images = len(images)
plt.figure(figsize=(8, 4))
rows = 3 if pred_masks is not None else 2
for i in range(num_images):
plt.subplot(rows, num_images, i + 1)
plt.imshow(images[i] / 255)
plt.axis("off")
plt.subplot(rows, num_images, num_images + i + 1)
plt.imshow(masks[i])
plt.axis("off")
if pred_masks is not None:
plt.subplot(rows, num_images, i + 1 + 2 * num_images)
plt.imshow(pred_masks[i])
plt.axis("off")
plt.show()
plot_images_masks(batch["images"], batch["segmentation_masks"])
预处理将应用于评估数据集 eval_ds
。
eval_ds = preprocess_inputs(eval_ds)
Keras 提供了多种图像增强选项。在此示例中,我们将使用 RandomFlip
增强来增强训练数据集。RandomFlip
增强会随机水平或垂直翻转训练数据集中的图像。这有助于提高模型对图像中对象方向变化的鲁棒性。
train_ds = train_ds.map(keras.layers.RandomFlip())
batch = train_ds.take(1).get_single_element()
plot_images_masks(batch["images"], batch["segmentation_masks"])
请随时修改模型训练的配置,并注意训练结果如何变化。这是一个很好的练习,可以更好地了解训练流程。
优化器使用学习率计划来计算每个 epoch 的学习率。然后,优化器使用学习率来更新模型的权重。在这种情况下,学习率计划使用余弦衰减函数。余弦衰减函数开始时很高,然后随着时间的推移而减小,最终达到零。VOC 数据集的基数为 2124,批次大小为 4。数据集基数对于学习率衰减很重要,因为它决定了模型将训练多少步。初始学习率与 0.007 成正比,衰减步数为 2124。这意味着学习率将从 INITIAL_LR
开始,然后在 2124 步内减小到零。
BATCH_SIZE = 4
INITIAL_LR = 0.007 * BATCH_SIZE / 16
EPOCHS = 1
NUM_CLASSES = 21
learning_rate = keras.optimizers.schedules.CosineDecay(
INITIAL_LR,
decay_steps=EPOCHS * 2124,
)
让我们将 resnet_50_imagenet
预训练权重作为模型的图像编码器,此实现既可以用作 DeepLabV3,也可以用作具有附加解码器块的 DeepLabV3+。对于 DeepLabV3+,我们通过提供 low_level_feature_key
作为 P2
金字塔级别输出来实例化 DeepLabV3Backbone 模型,以从充当解码器块的 resnet_50_imagenet
中提取特征。要将此模型用作 DeepLabV3 架构,请忽略默认为 None
的 low_level_feature_key
。
然后,我们创建 DeepLabV3ImageSegmenter 实例。num_classes
参数指定模型将训练分割的类别数。preprocessor
参数用于将预处理应用于图像输入和掩码。
image_encoder = keras_hub.models.Backbone.from_preset("resnet_50_imagenet")
deeplab_backbone = keras_hub.models.DeepLabV3Backbone(
image_encoder=image_encoder,
low_level_feature_key="P2",
spatial_pyramid_pooling_key="P5",
dilation_rates=[6, 12, 18],
upsampling_size=8,
)
model = keras_hub.models.DeepLabV3ImageSegmenter(
backbone=deeplab_backbone,
num_classes=21,
activation="softmax",
preprocessor=preprocessor,
)
model.compile() 函数为模型设置训练过程。它定义了 - 优化算法 - 随机梯度下降 (SGD) - 损失函数 - 分类交叉熵 - 评估指标 - 平均 IoU 和分类准确率
语义分割评估指标
平均交并比 (MeanIoU):MeanIoU 衡量语义分割模型如何准确识别和描绘图像中的不同对象或区域。它计算预测的对象边界和实际的对象边界之间的重叠,并提供一个介于 0 和 1 之间的分数,其中 1 表示完美匹配。
分类准确率:分类准确率衡量图像中正确分类的像素的比例。它给出一个简单的百分比,指示模型预测整个图像中像素类别的准确程度。
本质上,MeanIoU 强调识别特定对象边界的准确性,而分类准确率则给出了整体像素级正确性的广阔概述。
model.compile(
optimizer=keras.optimizers.SGD(
learning_rate=learning_rate, weight_decay=0.0001, momentum=0.9, clipnorm=10.0
),
loss=keras.losses.CategoricalCrossentropy(from_logits=False),
metrics=[
keras.metrics.MeanIoU(
num_classes=NUM_CLASSES, sparse_y_true=False, sparse_y_pred=False
),
keras.metrics.CategoricalAccuracy(),
],
)
model.summary()
Preprocessor: "deep_lab_v3_image_segmenter_preprocessor"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Config ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩ │ deep_lab_v3_image_converter (DeepLabV3ImageConverter) │ Image size: (512, 512) │ └───────────────────────────────────────────────────────────────┴──────────────────────────────────────────┘
Model: "deep_lab_v3_image_segmenter"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━┩ │ inputs (InputLayer) │ (None, None, None, 3) │ 0 │ ├───────────────────────────────────────────────┼────────────────────────────────────┼─────────────────────┤ │ deep_lab_v3_backbone (DeepLabV3Backbone) │ (None, None, None, 256) │ 39,190,656 │ ├───────────────────────────────────────────────┼────────────────────────────────────┼─────────────────────┤ │ segmentation_output (Conv2D) │ (None, None, None, 21) │ 5,376 │ └───────────────────────────────────────────────┴────────────────────────────────────┴─────────────────────┘
Total params: 39,196,032 (149.52 MB)
Trainable params: 39,139,232 (149.30 MB)
Non-trainable params: 56,800 (221.88 KB)
实用程序函数 dict_to_tuple
有效地将训练和验证数据集的字典转换为图像和独热编码分割掩码的元组,该元组在 DeepLabv3+ 模型的训练和评估期间使用。
def dict_to_tuple(x):
return x["images"], tf.one_hot(
tf.cast(tf.squeeze(x["segmentation_masks"], axis=-1), "int32"), 21
)
train_ds = train_ds.map(dict_to_tuple)
eval_ds = eval_ds.map(dict_to_tuple)
model.fit(train_ds, validation_data=eval_ds, epochs=EPOCHS)
1/Unknown 40s 40s/step - categorical_accuracy: 0.1191 - loss: 3.0568 - mean_io_u: 0.0118
2124/2124 ━━━━━━━━━━━━━━━━━━━━ 281s 114ms/步 - categorical_accuracy: 0.7286 - loss: 1.0707 - mean_io_u: 0.0926 - val_categorical_accuracy: 0.8199 - val_loss: 0.5900 - val_mean_io_u: 0.3265
<keras.src.callbacks.history.History at 0x7fd7a897f8d0>
现在 DeepLabv3+ 的模型训练已经完成,让我们通过对几个示例图像进行预测来对其进行测试。注意:出于演示目的,模型仅在一个 epoch 上进行了训练,为了获得更好的准确性和结果,请使用更多的 epoch 进行训练。
test_ds = load(split="sbd_eval")
test_ds = preprocess_inputs(test_ds)
images, masks = next(iter(test_ds.take(1)))
images = ops.convert_to_tensor(images)
masks = ops.convert_to_tensor(masks)
preds = ops.expand_dims(ops.argmax(model.predict(images), axis=-1), axis=-1)
masks = ops.expand_dims(ops.argmax(masks, axis=-1), axis=-1)
plot_images_masks(images, masks, preds)
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 3s/步
1/1 ━━━━━━━━━━━━━━━━━━━━ 3s 3s/步
以下是使用 KerasHub DeepLabv3 模型的一些其他提示