KerasHub: 预训练模型 / API 文档 / 模型架构 / ViT / ViTImageClassifier 模型

ViTImageClassifier 模型

[源代码]

ViTImageClassifier

keras_hub.models.ViTImageClassifier(
    backbone,
    num_classes,
    preprocessor=None,
    pooling="token",
    intermediate_dim=None,
    activation=None,
    dropout=0.0,
    head_dtype=None,
    **kwargs
)

ViT 图像分类任务。

ViTImageClassifier 任务封装了 keras_hub.models.ViTBackbonekeras_hub.models.Preprocessor,以创建一个可用于图像分类的模型。ViTImageClassifier 任务接受一个额外的 num_classes 参数,用于控制预测输出类的数量。

要使用 fit() 进行微调,请传递一个包含 (x, y) 标签元组的数据集,其中 x 是字符串,y[0, num_classes) 范围内的整数。

请注意,与 keras_hub.model.ImageClassifier 不同,ViTImageClassifier 会从主干模型中提取 cls_token,它是第一个序列。

参数

  • backbone: 一个 keras_hub.models.ViTBackbone 实例或一个 keras.Model
  • num_classes:int。要预测的类别数量。
  • preprocessor: None、一个 keras_hub.models.Preprocessor 实例、一个 keras.Layer 实例或一个可调用对象。如果为 None,则不会对输入应用任何预处理。
  • pooling: 指定分类策略的字符串。选择会影响用于分类的特征向量的维度和性质。"token": 表示整体图像特征的单个向量(类 token)。"gap": 表示空间维度上平均特征的单个向量。
  • intermediate_dim: 最终分类层之前中间表示层的可选维度。如果为 None,则直接使用 Transformer 的输出。默认为 None
  • activationNone、str 或可调用对象。用于 Dense 层的激活函数。将 activation 设置为 None 以返回输出 logits。默认为 "softmax"
  • head_dtypeNone、str 或 keras.mixed_precision.DTypePolicy。用于分类头计算和权重的 dtype。

示例

调用 predict() 运行推理。

# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
classifier = keras_hub.models.ViTImageClassifier.from_preset(
    "vgg_16_imagenet"
)
classifier.predict(images)

在单个批次上调用 fit()

# Load preset and train
images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
classifier = keras_hub.models.VGGImageClassifier.from_preset(
    "vit_base_patch16_224"
)
classifier.fit(x=images, y=labels, batch_size=2)

使用自定义损失、优化器和主干网络调用 fit()

classifier = keras_hub.models.VGGImageClassifier.from_preset(
    "vit_base_patch16_224"
)
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
)
classifier.backbone.trainable = False
classifier.fit(x=images, y=labels, batch_size=2)

自定义主干网络。

images = np.random.randint(0, 256, size=(2, 224, 224, 3))
labels = [0, 3]
model = keras_hub.models.ViTBackbone(
    image_shape = (224, 224, 3),
    patch_size=16,
    num_layers=6,
    num_heads=3,
    hidden_dim=768,
    mlp_dim=2048
)
classifier = keras_hub.models.ViTImageClassifier(
    backbone=backbone,
    num_classes=4,
)
classifier.fit(x=images, y=labels, batch_size=2)

[源代码]

from_preset 方法

ViTImageClassifier.from_preset(preset, load_weights=True, **kwargs)

从模型预设实例化一个 keras_hub.models.Task

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

对于任何 Task 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

此构造函数可以通过两种方式调用。可以从任务特定的基类调用,例如 keras_hub.models.CausalLM.from_preset(),或者从模型类调用,例如 keras_hub.models.BertTextClassifier.from_preset()。如果从基类调用,则返回对象的子类将根据预设目录中的配置推断。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights: 布尔值。如果为 True,已保存的权重将被加载到模型架构中。如果为 False,所有权重将被随机初始化。

示例

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)

# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
预设 参数 描述
vit_base_patch16_224_imagenet 85.80M ViT-B16 模型,在 224x224 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_base_patch16_224_imagenet21k 85.80M ViT-B16 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。
vit_base_patch16_384_imagenet 86.09M ViT-B16 模型,在 384x384 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_base_patch32_224_imagenet21k 87.46M ViT-B32 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。
vit_base_patch32_384_imagenet 87.53M ViT-B32 模型,在 384x384 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_large_patch16_224_imagenet 303.30M ViT-L16 模型,在 224x224 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_large_patch16_224_imagenet21k 303.30M ViT-L16 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。
vit_large_patch16_384_imagenet 303.69M ViT-L16 模型,在 384x384 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_large_patch32_224_imagenet21k 305.51M ViT-L32 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。
vit_large_patch32_384_imagenet 305.61M ViT-L32 模型,在 384x384 图像分辨率的 ImageNet 1k 数据集上预训练。
vit_huge_patch14_224_imagenet21k 630.76M ViT-H14 骨干网络,在 224x224 图像分辨率的 ImageNet 21k 数据集上预训练。

backbone 属性

keras_hub.models.ViTImageClassifier.backbone

一个具有核心架构的 keras_hub.models.Backbone 模型。


preprocessor 属性

keras_hub.models.ViTImageClassifier.preprocessor

用于预处理输入的 keras_hub.models.Preprocessor 层。