VGGBackbone
类keras_hub.models.VGGBackbone(
stackwise_num_repeats, stackwise_num_filters, image_shape=(None, None, 3), **kwargs
)
此类代表 VGG 模型的 Keras Backbone。
此类实现了一个 VGG backbone,如 用于大规模图像识别的超深度卷积网络(ICLR 2015) 中所述。
参数
示例
input_data = np.ones((2, 224, 224, 3), dtype="float32")
# Pretrained VGG backbone.
model = keras_hub.models.VGGBackbone.from_preset("vgg_16_imagenet")
model(input_data)
# Randomly initialized VGG backbone with a custom config.
model = keras_hub.models.VGGBackbone(
stackwise_num_repeats = [2, 2, 3, 3, 3],
stackwise_num_filters = [64, 128, 256, 512, 512],
image_shape = (224, 224, 3),
)
model(input_data)
from_preset
方法VGGBackbone.from_preset(preset, load_weights=True, **kwargs)
从模型预设实例化一个 keras_hub.models.Backbone
。
预设是一个配置、权重和其他文件资源的目录,用于保存和加载预训练模型。preset
可以作为以下之一传递
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
此构造函数可以通过两种方式调用。可以从基类调用,例如 keras_hub.models.Backbone.from_preset()
,或者从模型类调用,例如 keras_hub.models.GemmaBackbone.from_preset()
。如果从基类调用,返回对象的子类将从预设目录中的配置中推断出来。
对于任何 Backbone
子类,您可以运行 cls.presets.keys()
以列出该类上所有可用的内置预设。
参数
True
,权重将被加载到模型架构中。如果为 False
,权重将被随机初始化。示例
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
预设 | 参数 | 描述 |
---|---|---|
vgg_11_imagenet | 9.22M | 在 ImageNet 1k 数据集上以 224x224 分辨率预训练的 11 层 vgg 模型。 |
vgg_13_imagenet | 9.40M | 在 ImageNet 1k 数据集上以 224x224 分辨率预训练的 13 层 vgg 模型。 |
vgg_16_imagenet | 14.71M | 在 ImageNet 1k 数据集上以 224x224 分辨率预训练的 16 层 vgg 模型。 |
vgg_19_imagenet | 20.02M | 在 ImageNet 1k 数据集上以 224x224 分辨率预训练的 19 层 vgg 模型。 |