StableDiffusion3Backbone 类keras_hub.models.StableDiffusion3Backbone(
mmdit_patch_size,
mmdit_hidden_dim,
mmdit_num_layers,
mmdit_num_heads,
mmdit_position_size,
mmdit_qk_norm,
mmdit_dual_attention_indices,
vae,
clip_l,
clip_g,
t5=None,
latent_channels=16,
output_channels=3,
num_train_timesteps=1000,
shift=3.0,
image_shape=(1024, 1024, 3),
data_format=None,
dtype=None,
**kwargs
)
具有超参数的Stable Diffusion 3核心网络。
此骨干网络导入CLIP和T5模型作为文本编码器,并实现了Stable Diffusion 3模型的基准MMDiT和VAE网络。
默认构造函数提供了完全可定制的、随机初始化的MMDiT和VAE模型,具有任意超参数。要加载预设架构和权重,请使用from_preset构造函数。
参数
None和"rms_norm"。通常,对于3.0版本设置为None,对于3.5版本设置为"rms_norm"。None。16。3。1000。3.0。(1024, 1024, 3)。None或str。如果指定,则为"channels_last"或"channels_first"。输入维度的顺序。"channels_last"对应于形状为(batch_size, height, width, channels)的输入,而"channels_first"对应于形状为(batch_size, channels, height, width)的输入。它默认为Keras配置文件~/.keras/keras.json中找到的image_data_format值。如果您从未设置过,则默认为"channels_last"。keras.mixed_precision.DTypePolicy。用于模型计算和权重的dtype。请注意,某些计算(如softmax和层归一化)将始终以float32精度进行,而与dtype无关。示例
# Pretrained Stable Diffusion 3 model.
model = keras_hub.models.StableDiffusion3Backbone.from_preset(
"stable_diffusion_3_medium"
)
# Randomly initialized Stable Diffusion 3 model with custom config.
vae = keras_hub.models.VAEBackbone(...)
clip_l = keras_hub.models.CLIPTextEncoder(...)
clip_g = keras_hub.models.CLIPTextEncoder(...)
model = keras_hub.models.StableDiffusion3Backbone(
mmdit_patch_size=2,
mmdit_num_heads=4,
mmdit_hidden_dim=256,
mmdit_depth=4,
mmdit_position_size=192,
mmdit_qk_norm=None,
mmdit_dual_attention_indices=None,
vae=vae,
clip_l=clip_l,
clip_g=clip_g,
)
from_preset 方法StableDiffusion3Backbone.from_preset(preset, load_weights=True, **kwargs)
从模型预设实例化一个 keras_hub.models.Backbone。
预设是一个包含配置、权重和其他文件资源的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''modelscope://user/bert_base_en'。'./bert_base_en'此构造函数可以通过两种方式之一调用。要么从基类调用,如 keras_hub.models.Backbone.from_preset(),要么从模型类调用,如 keras_hub.models.GemmaBackbone.from_preset()。如果从基类调用,则返回对象的子类将根据预设目录中的配置进行推断。
对于任何 Backbone 子类,您可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。
参数
示例
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
| 预设 | 参数 | 描述 |
|---|---|---|
| stable_diffusion_3_medium | 29.9亿 | 30 亿参数,包括 CLIP L 和 CLIP G 文本编码器、MMDiT 生成模型和 VAE 自动编码器。由 Stability AI 开发。 |
| stable_diffusion_3.5_medium | 33.7亿 | 30 亿参数,包括 CLIP L 和 CLIP G 文本编码器、MMDiT-X 生成模型和 VAE 自动编码器。由 Stability AI 开发。 |
| stable_diffusion_3.5_large | 90.5亿 | 90 亿参数,包括 CLIP L 和 CLIP G 文本编码器、MMDiT 生成模型和 VAE 自动编码器。由 Stability AI 开发。 |
| stable_diffusion_3.5_large_turbo | 90.5亿 | 90 亿参数,包括 CLIP L 和 CLIP G 文本编码器、MMDiT 生成模型和 VAE 自动编码器。这是一个时间步蒸馏版本,消除了无分类器引导,并使用更少的步骤进行生成。由 Stability AI 开发。 |