KerasHub: 预训练模型 / API文档 / 模型架构 / Roberta / RobertaTextClassifier 模型

RobertaTextClassifier 模型

[源代码]

RobertaTextClassifier

keras_hub.models.RobertaTextClassifier(
    backbone,
    num_classes,
    preprocessor=None,
    activation=None,
    hidden_dim=None,
    dropout=0.0,
    **kwargs
)

用于分类任务的端到端 RoBERTa 模型。

该模型将一个分类头连接到 keras_hub.model.RobertaBackbone 实例,将骨干网络的输出映射到适合分类任务的 logits。要使用此模型及预训练权重,请参阅 from_preset() 构造函数。

此模型可以选择性地配置一个 preprocessor 层,在这种情况下,它将在 fit()predict()evaluate() 调用期间自动对原始输入应用预处理。使用 from_preset() 创建模型时,默认会执行此操作。

免责声明:预训练模型按“原样”提供,不提供任何形式的保证或条件。底层模型由第三方提供,并受单独的许可证约束,可在此处获取。

参数

  • backbone: 一个 keras_hub.models.RobertaBackbone 实例。
  • num_classes:int。要预测的类别数量。
  • preprocessor: 一个 keras_hub.models.RobertaTextClassifierPreprocessorNone。如果为 None,则此模型将不应用预处理,并且在调用模型之前应先对输入进行预处理。
  • activation:可选的 str 或可调用对象。用于模型输出的激活函数。设置 activation="softmax" 以返回输出概率。默认为 None
  • hidden_dim:int。池化层的大小。
  • dropout: float。 dropout 概率值,应用于池化输出,以及第一个全连接层之后。

示例

原始字符串数据。

features = ["The quick brown fox jumped.", "I forgot my homework."]
labels = [0, 3]

# Pretrained classifier.
classifier = keras_hub.models.RobertaTextClassifier.from_preset(
    "roberta_base_en",
    num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)
classifier.predict(x=features, batch_size=2)

# Re-compile (e.g., with a new learning rate).
classifier.compile(
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer=keras.optimizers.Adam(5e-5),
    jit_compile=True,
)
# Access backbone programmatically (e.g., to change `trainable`).
classifier.backbone.trainable = False
# Fit again.
classifier.fit(x=features, y=labels, batch_size=2)

预处理的整数数据。

features = {
    "token_ids": np.ones(shape=(2, 12), dtype="int32"),
    "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2),
}
labels = [0, 3]

# Pretrained classifier without preprocessing.
classifier = keras_hub.models.RobertaTextClassifier.from_preset(
    "roberta_base_en",
    num_classes=4,
    preprocessor=None,
)
classifier.fit(x=features, y=labels, batch_size=2)

自定义骨干和词汇表。

features = ["a quick fox", "a fox quick"]
labels = [0, 3]

vocab = {"<s>": 0, "<pad>": 1, "</s>": 2, "<mask>": 3}
vocab = {**vocab, "a": 4, "Ġquick": 5, "Ġfox": 6}
merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"]
merges += ["Ġ f", "o x", "Ġf ox"]
tokenizer = keras_hub.models.RobertaTokenizer(
    vocabulary=vocab,
    merges=merges
)
preprocessor = keras_hub.models.RobertaTextClassifierPreprocessor(
    tokenizer=tokenizer,
    sequence_length=128,
)
backbone = keras_hub.models.RobertaBackbone(
    vocabulary_size=20,
    num_layers=4,
    num_heads=4,
    hidden_dim=256,
    intermediate_dim=512,
    max_sequence_length=128
)
classifier = keras_hub.models.RobertaTextClassifier(
    backbone=backbone,
    preprocessor=preprocessor,
    num_classes=4,
)
classifier.fit(x=features, y=labels, batch_size=2)

[源代码]

from_preset 方法

RobertaTextClassifier.from_preset(preset, load_weights=True, **kwargs)

从模型预设实例化一个 keras_hub.models.Task

预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:

  1. 一个内置的预设标识符,如 'bert_base_en'
  2. 一个 Kaggle Models 句柄,如 'kaggle://user/bert/keras/bert_base_en'
  3. 一个 Hugging Face 句柄,如 'hf://user/bert_base_en'
  4. 一个本地预设目录的路径,如 './bert_base_en'

对于任何 Task 子类,您都可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。

此构造函数可以通过两种方式调用。一种方式是从特定任务的基类(如 keras_hub.models.CausalLM.from_preset())调用,另一种方式是从模型类(如 keras_hub.models.BertTextClassifier.from_preset())调用。如果从基类调用,返回对象的子类将从预设目录中的配置推断出来。

参数

  • preset:字符串。一个内置预设标识符、一个 Kaggle Models 句柄、一个 Hugging Face 句柄或一个本地目录的路径。
  • load_weights: 布尔值。如果为 True,已保存的权重将被加载到模型架构中。如果为 False,所有权重将被随机初始化。

示例

# Load a Gemma generative task.
causal_lm = keras_hub.models.CausalLM.from_preset(
    "gemma_2b_en",
)

# Load a Bert classification task.
model = keras_hub.models.TextClassifier.from_preset(
    "bert_base_en",
    num_classes=2,
)
预设 参数 描述
roberta_base_en 124.05M 12 层 RoBERTa 模型,大小写保持不变。在英文维基百科、BooksCorpus、CommonCrawl 和 OpenWebText 上训练。
roberta_large_en 354.31M 24 层 RoBERTa 模型,大小写保持不变。在英文维基百科、BooksCorpus、CommonCrawl 和 OpenWebText 上训练。
xlm_roberta_base_multi 277.45M 12 层 XLM-RoBERTa 模型,大小写保持不变。在 100 种语言的 CommonCrawl 上训练。
xlm_roberta_large_multi 558.84M 24 层 XLM-RoBERTa 模型,大小写保持不变。在 100 种语言的 CommonCrawl 上训练。

backbone 属性

keras_hub.models.RobertaTextClassifier.backbone

一个具有核心架构的 keras_hub.models.Backbone 模型。


preprocessor 属性

keras_hub.models.RobertaTextClassifier.preprocessor

用于预处理输入的 keras_hub.models.Preprocessor 层。