ResNetBackbone 类keras_hub.models.ResNetBackbone(
input_conv_filters,
input_conv_kernel_sizes,
stackwise_num_filters,
stackwise_num_blocks,
stackwise_num_strides,
block_type,
use_pre_activation=False,
image_shape=(None, None, 3),
data_format=None,
dtype=None,
**kwargs
)
带有超参数的 ResNet 和 ResNetV2 核心网络。
此类实现了 Deep Residual Learning for Image Recognition (CVPR 2016)、Identity Mappings in Deep Residual Networks (ECCV 2016)、ResNet strikes back: An improved training procedure in timm (NeurIPS 2021 Workshop) 和 Bag of Tricks for Image Classification with Convolutional Neural Networks 中描述的 ResNet 主干网络。
ResNet 和 ResNetV2 的区别在于它们各自构建块的结构。在 ResNetV2 中,批归一化和 ReLU 激活位于卷积层之前,而 ResNet 则是在卷积层之后应用批归一化和 ReLU 激活。
ResNetVd 对标准 ResNet 进行了两项关键修改。首先,初始卷积层被一系列三个连续的卷积层替换。其次,跳跃连接使用额外的池化操作,而不是在卷积层本身进行下采样。
参数
"basic_block"、"bottleneck_block"、"basic_block_vd" 或 "bottleneck_block_vd"。对于 ResNet18 和 ResNet34 使用 "basic_block"。对于 ResNet50、ResNet101 和 ResNet152 使用 "bottleneck_block",而 "_vd" 前缀用于相应的 ResNet_vd 变体。True,ResNet 为 False。(None, None, 3)。None或str。如果指定,则为"channels_last"或"channels_first"。输入维度的顺序。"channels_last"对应于形状为(batch_size, height, width, channels)的输入,而"channels_first"对应于形状为(batch_size, channels, height, width)的输入。它默认为Keras配置文件~/.keras/keras.json中找到的image_data_format值。如果您从未设置过,则默认为"channels_last"。None 或 str 或 keras.mixed_precision.DTypePolicy。用于模型计算和权重的 dtype。示例
input_data = np.random.uniform(0, 1, size=(2, 224, 224, 3))
# Pretrained ResNet backbone.
model = keras_hub.models.ResNetBackbone.from_preset("resnet_50_imagenet")
model(input_data)
# Randomly initialized ResNetV2 backbone with a custom config.
model = keras_hub.models.ResNetBackbone(
input_conv_filters=[64],
input_conv_kernel_sizes=[7],
stackwise_num_filters=[64, 64, 64],
stackwise_num_blocks=[2, 2, 2],
stackwise_num_strides=[1, 2, 2],
block_type="basic_block",
use_pre_activation=True,
)
model(input_data)
from_preset 方法ResNetBackbone.from_preset(preset, load_weights=True, **kwargs)
从模型预设实例化一个 keras_hub.models.Backbone。
预设是一个包含配置、权重和其他文件资源的目录,用于保存和加载预训练模型。preset 可以作为以下之一传递:
'bert_base_en''kaggle://user/bert/keras/bert_base_en''hf://user/bert_base_en''modelscope://user/bert_base_en'。'./bert_base_en'此构造函数可以通过两种方式之一调用。要么从基类调用,如 keras_hub.models.Backbone.from_preset(),要么从模型类调用,如 keras_hub.models.GemmaBackbone.from_preset()。如果从基类调用,则返回对象的子类将根据预设目录中的配置进行推断。
对于任何 Backbone 子类,您可以运行 cls.presets.keys() 来列出该类上所有可用的内置预设。
参数
示例
# Load a Gemma backbone with pre-trained weights.
model = keras_hub.models.Backbone.from_preset(
"gemma_2b_en",
)
# Load a Bert backbone with a pre-trained config and random weights.
model = keras_hub.models.Backbone.from_preset(
"bert_base_en",
load_weights=False,
)
| 预设 | 参数 | 描述 |
|---|---|---|
| resnet_18_imagenet | 11.19M | 18 层 ResNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_vd_18_imagenet | 11.72M | 18 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_vd_34_imagenet | 21.84M | 34 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_50_imagenet | 23.56M | 50 层 ResNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_v2_50_imagenet | 23.56M | 50 层 ResNetV2 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_vd_50_imagenet | 25.63M | 50 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_vd_50_ssld_imagenet | 25.63M | 50 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练,并采用知识蒸馏。 |
| resnet_vd_50_ssld_v2_imagenet | 25.63M | 50 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练,并采用知识蒸馏和 AutoAugment。 |
| resnet_vd_50_ssld_v2_fix_imagenet | 25.63M | 50 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练,并采用知识蒸馏、AutoAugment 和额外的分类头微调。 |
| resnet_101_imagenet | 42.61M | 101 层 ResNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_v2_101_imagenet | 42.61M | 101 层 ResNetV2 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_vd_101_imagenet | 44.67M | 101 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_vd_101_ssld_imagenet | 44.67M | 101 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练,并采用知识蒸馏。 |
| resnet_152_imagenet | 58.30M | 152 层 ResNet 模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_vd_152_imagenet | 60.36M | 152 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |
| resnet_vd_200_imagenet | 74.93M | 200 层 ResNetVD(带技巧包的 ResNet)模型,在 224x224 分辨率的 ImageNet 1k 数据集上预训练。 |