Phi3Tokenizer
类keras_hub.tokenizers.Phi3Tokenizer(proto, **kwargs)
基于 SentencePiece 的 Phi3 分词器层。
这个分词器类将原始字符串分词为整数序列,并基于 keras_hub.tokenizers.SentencePieceTokenizer
。与底层分词器不同,它将检查 Phi3 模型所需的所有特殊 token,并提供一个 from_preset()
方法,以自动下载 Phi3 预设的匹配词汇表。
如果输入是一批字符串(秩 > 0),该层将输出一个 tf.RaggedTensor
,其中输出的最后一个维度是不规则的。
如果输入是标量字符串(秩 == 0),该层将输出一个具有静态形状 [None]
的密集 tf.Tensor
。
参数
string
路径,也可以是包含序列化 SentencePiece proto 的 bytes
对象。有关格式的更多详细信息,请参阅 SentencePiece 存储库。示例
# Unbatched input.
tokenizer = keras_hub.models.Phi3Tokenizer.from_preset(
"phi3_mini_4k_instruct_en",
)
tokenizer("The quick brown fox jumped.")
# Batched input.
tokenizer(["The quick brown fox jumped.", "The fox slept."])
# Detokenization.
tokenizer.detokenize(tokenizer("The quick brown fox jumped."))
from_preset
方法Phi3Tokenizer.from_preset(preset, config_file="tokenizer.json", **kwargs)
从模型预设实例化一个 keras_hub.models.Tokenizer
。
预设是一个包含配置、权重和其他文件资产的目录,用于保存和加载预训练模型。preset
可以作为以下之一传递:
'bert_base_en'
'kaggle://user/bert/keras/bert_base_en'
'hf://user/bert_base_en'
'./bert_base_en'
对于任何 Tokenizer
子类,您都可以运行 cls.presets.keys()
来列出该类上所有可用的内置预设。
此构造函数可以通过以下两种方式之一调用。要么从基类(如 keras_hub.models.Tokenizer.from_preset()
)调用,要么从模型类(如 keras_hub.models.GemmaTokenizer.from_preset()
)调用。如果从基类调用,返回对象的子类将从预设目录中的配置推断。
参数
示例
# Load a preset tokenizer.
tokenizer = keras_hub.tokenizer.Tokenizer.from_preset("bert_base_en")
# Tokenize some input.
tokenizer("The quick brown fox tripped.")
# Detokenize some input.
tokenizer.detokenize([5, 6, 7, 8, 9])
预设 | 参数 | 描述 |
---|---|---|
phi3_mini_4k_instruct_en | 3.82B | 38 亿参数,32 层,4k 上下文长度,Phi-3 模型。该模型使用 Phi-3 数据集进行训练。该数据集包括合成数据和经过筛选的公开可用网站数据,重点关注高质量和推理密集型属性。 |
phi3_mini_128k_instruct_en | 3.82B | 38 亿参数,32 层,128k 上下文长度,Phi-3 模型。该模型使用 Phi-3 数据集进行训练。该数据集包括合成数据和经过筛选的公开可用网站数据,重点关注高质量和推理密集型属性。 |